
ASTROCAL

 i

ASTROCAL is a highly advanced calculator. Beyond a mere calculator, ASTROCAL is a
true problem-solving machine. The problem-solving capability comes from the unique
combination of programmability and programming method.

ASTROCAL provides ready access to the problem-solving machinery ── the programs.
Conveniently stored on disks, they free you from the need to remember equations,
constants, numerical algorithms, and generally from the lengthy mechanical process
of obtaining an answer to a well formulated problem. The method of programming
enables you, with or without prior programming experience, to solve involved
problems easily, creating your own programs in a manner equivalent to the
mathematical sequence you use in stating the problem.

Regardless of your previous programming experience, you are in for a pleasant
surprise. Even if you have no prior programming experience, you will find the
simple method of programming ASTROCAL is not only easy but also fun. If you are
experienced users of computers, you can enjoy many features previously available
only on full-scale computers.

 Vernon B. Hester provides ASTROCAL on an as-is basis.

Vernon B. Hester shall not be liable or responsible to the user with respect
to liability, loss, or damage caused or alleged to be caused directly or
indirectly by the use of ASTROCAL, that includes but is not limited to any
interruption of service, loss of business, or anticipatory profits, or
consequential damage resulting from use of ASTROCAL.

 Enjoy and have fun,

 Vernon B. Hester

Third printing January 1999
Fourth printing April 2001
Fifth printing August 2010

TABLE OF CONTENTS

ii

INTRODUCTION. 1
 Features. 1
 Modes of Operation. 2
 Manual Calculations . 3
 Executing Programs. 4
 Creating Your Own Programs. 6
 Method 1. 7
 Method 2. 9
 Precision and Accuracy. .10

ENTERING AND DISPLAYING NUMBERS .11
 Entering Numbers. .11
 Entering π .12
 Scientific Notation .12
 Advanced Effects and Uses of the Enter Exponent key13
 Clearing Incorrect Number Entries .14
 Clearing a Calculation. .14
 Display Control .15
 Error Conditions. .17

ARITHMETIC CALCULATIONS .19
 Basic Operations. .19
 Chained Operations. .19
 A Special Type of Operational Chain .20
 Parentheses .21
 The Use of = in Complicated Expressions22

SPECIAL FUNCTIONS .23
 Functions of a Single Variable. .23
 Angular Mode Selection. .25
 Functions of Two Variables. .27
 Angular Unit Conversion .28
 Coordinate (Polar/Rectangular) Conversions.30

ALGEBRAIC NOTATION: MORE ABOUT PENDING OPERATIONS31
 The Algebraic Hierarchy .31
 Keeping Track of Display-Register Contents.33

ADDRESSABLE MEMORY REGISTERS. .35
 Storing Data into Addressable Memory. .35
 Recalling Data from Addressable Memory.36
 Clearing the Addressable Memory Registers37
 Direct Addressable Memory Arithmetic. .38
 Addressable Memory/Display Exchange .39
 Supplying Missing Operands with Memory Functions.40

TABLE OF CONTENTS

 iii

EXECUTING PROGRAMS STORED ON DISK .41
 File Names. .41
 File Name Extensions. .41
 File Search .42
 Loading a Program from Disk .42
 Merging a Load Module from Disk .43
 Saving a Program to Disk. .44
 Executing a Program .44

GENERAL PROGRAMMING INSTRUCTIONS. .45
 Elements of Program Execution .46
 Mechanics of Programming. .48

ELEMENTARY PROGRAMMING. .49
 Using Labels. .49
 Using Execute and Halt. .50
 Entering a Program. .51
 Editing Programs. .52
 Displaying the Program. .52
 Replacing an Instruction. .52
 Deleting an Instruction .52
 Inserting an Instruction. .53
 Single-step and Back-step .53
 Other Program Counter Relocation Commands53
 Erasing Several Instructions. .53
 Program Keys, Codes, and Instructions53
 Key code values and instruction functions54
 Display instructions. .56
 Program Editing Commands. .57
 Listing a Program .58
 Sample listing. .59
 Find Commands .60
 Program Debugging .60
 Single-Step Execution .60
 Trace .60
 Hold. .61
 Break Point .61
 Development of Programming Style. .61
 Practice Problems .62

TRANSFER INSTRUCTIONS .65
 Unconditional Transfer Instructions .65
 Conditional Transfer Instructions .65
 Setting and Resetting Program Flags .67
 Conditional Transfer Examples .68
 Decrement and Jump Non-Zero .71

TABLE OF CONTENTS

iv

SUBROUTINES .73
 Calling a Subroutine. .73
 Labeling a Subroutine .76
 Avoid Using = in Subroutines. .76
 The Return Instruction. .77
 Subroutine Practice Problems. .77

INDIRECT INSTRUCTIONS .81
 Indirect Addressable Memory Register Instructions81
 Indirect Program-Transfer Instructions.87
 Indirect Fix Dec. Instruction .89
 Indirect LOG 10 Instruction .89

PRINTING. .91
 Printing Data .91
 Programming Implications. .91
 Paper Advancements. .92
 Indirect Print Instructions .92

ERROR CONDITIONS. .95
 Too-Small and Overflow. .95
 Division by Zero. .95
 Function Argument Outside of Range. .95
 Exceeding Capacity of Internal Registers.95
 Undefined Transfer. .96
 Attempt to Execute past Location 9999 .95
 Improper Operation Sequences. .96
 Clearing an Error Condition .96
 Errors Encountered in the Execute Mode.96

GLOSSARY. .97

INDEX . 103

INTRODUCTION

 Page 1

FEATURES

10,000 Program Storage Locations ── Simply place ASTROCAL in the program mode and
it remembers up to 10,000 calculation instructions and numbers that can be
repeated on your command.

85 Labels ── These labels permit quick identification or transfer to any program
segment.

25 Preprogrammed Key Functions ── Trigonometric and logarithmic functions,
powers and roots, factorials, reciprocals, conversions, and π are available
directly from the keyboard.

100 Addressable Memory Registers ── Store and recall data or perform direct
register arithmetic: addition, subtraction, multiplication, or division with any
addressable memory register without affecting the calculation in progress.

User Selectable Precision ── All registers, internal and addressable, provide the
selected digit numbers with power-of-ten exponent. The selected digits are 119,
79, 39, 21, 19, and 17. Model I and Model III are 119, 63, 39, 19, and 17.

26 User Definable Keys ── These enable user-definable functions to be executed
simply by pressing the appropriate upper case letter key.

85 Internal Processing Registers ── These are used to hold operands for
calculations in progress. MAX-80 has 69 Internal Processing Registers, and the
number of Internal Processing Registers for the Model I and Model III:
High Memory Usage Diskette Configuration Processing Registers
 Nothing Single-sided diskettes 39
 Nothing Double-sided diskettes 23
 Printer Filter Single-sided diskettes 35
 Printer Filter Double-sided diskettes 19

10 Logical Decision Functions ── Program ASTROCAL to make repetitive decisions and
transfer to appropriate program segments without interruption.

10 Program Flags ── These flags can be set, reset, and tested under program
control.

73 Program Levels ── 72 levels of subroutines can be defined, which when called by
the main program or another subroutine will execute and then automatically return
control to the calling routine.

True Algebraic Entry ── Automatic processing of parentheses and conformity to the
rules of algebraic hierarchy enable programs containing up to 85 (MAX-80 = 69, and
see above for the Model I/III) pending operations and up to 36 open parentheses to
be programmed and entered in the same way they are normally written.

Permanent Program Storage on Disk ── Save your programs on disk for quick and
easy retrieval.

Printing ── Print the results of your calculations for permanent records. Or print
a listing of your program for verification of the instructions keyed in.

INTRODUCTION

Page 2

MODES OF OPERATION

ASTROCAL can be operated in three different modes: calculate, program, and
execute.

When you initialize ASTROCAL it is in the calculate mode. You will find that once
you have mastered the use of the calculate mode you are well on you way to
mastering the program mode as well.

Calculate Mode ── Here you manually operate ASTROCAL as a general-purpose
calculator. You command each and every instruction by keystrokes: entering
numbers, performing mathematical operations, computing functions, and storing or
recalling intermediate results or other data. In the calculate mode you can also
single-step each instruction to cause actual execution of the stored program, one
instruction at a time. The single-step execution is primarily used to assist you
in program checkout and debugging.

Program Mode ── After defining the instructions you would use in the calculate mode
to solve a problem, you can key these instructions directly into ASTROCAL's
program memory for immediate use in the execute mode. It is also possible to step
through program memory, and display the instructions for editing purposes. This
feature will soon encourage you to use the program and execute modes to solve even
short problems that you might at first solve manually. Once you know there are no
mistakes in a program, you have nearly eliminated the opportunity to make mistakes
in working the problem through miskeyed or misordered operations. To avoid the
necessity of manually keying in your program each time it is needed, you can save
your program on a disk for future use.

Execute Mode ── You can use a program designed by yourself or by someone else to
solve a problem. Loading a saved program into program memory enables you to tailor
ASTROCAL to perform the instructions necessary to solve a special problem
automatically. You enter the data, start the calculation then typically wait just
a few seconds for the answer to appear on the display. Not only does the execute
mode save you the labor of remembering and executing keystrokes; it makes problems
solvable to a precision that previously required a full-scale computer. As a
subset of the execute mode, you can trace the program with the instructions and
the display-register contents available for review.

You can permanently record calculator activity by performing printing functions in
the calculate, program, or execute modes. In the calculate mode, you can print any
desired intermediate results. In the program mode, you can print a complete
listing of the stored program. And in the execute mode, print instructions
encountered in the program cause automatic printing of the quantity just computed.
Paper advance instructions can be used to set off groups of data. These printing
features enable you to execute a program without the necessity of program halts
that would be required to record multiple answers.

INTRODUCTION

 Page 3

MANUAL CALCULATIONS

By now you are eager to use ASTROCAL. When you initialize ASTROCAL, a menu of
register/display sizes are provided for your selection (the display size does not
have the same number of digits as the display-register). Press one of the number
keys 1 through 6 (I am presenting all of the examples in this manual using
ASTROCAL[6] ── the 6 key). Once you have pressed an appropriate key, a single zero
should appear in the display. If anything other than a single zero appears, press
CLEAR. You may bypass the menu by keying ASTROCAL n<ENTER> (where n is 1 through
6). If you press <BREAK> at the menu prompt, then you will exit ASTROCAL.

The following examples will familiarize you with the basic operations of ASTROCAL.
It is a safe practice to press CLEAR prior to beginning any new problem to be sure
all incomplete calculations is eliminated. However, when a problem ends with an =,
you can enter a new program without using CLEAR.

Example: 67.33 + 34.223 - 3.2 = ?

ENTER PRESS DISPLAY
67.33 + 67.33
34.223 - 101.553
3.2 = 98.353

Notice that the numbers and operations are entered in the same order as they occur
in the mathematical expression.

Example: 23 x 4.238 ÷ 0.056 = ?

ENTER PRESS DISPLAY
 CLEAR 0
23 * 23.
4.238 / 97.474
.046 = 2119.

Now try a slightly more complicated problem involving parentheses. Parentheses
ensure correct execution of the operations used, thus allowing you to enter
problems in the order they are written.

Example: (8 + 7) x 3 = ?

ENTER PRESS DISPLAY REMARKS
 CLEAR 0
 (0.
8 + 8.
7) 15. Evaluates contents in parentheses.
 * 15.
3 = 45.

INTRODUCTION

Page 4

To compute various mathematical functions of the displayed quantity, simply press
the corresponding function key.

Example: loge7 = ?

ENTER PRESS DISPLAY REMARKS
7 n 1.945910149 Note: lower case n. Also only the

first ten significant digits are
displayed (ASTROCAL[6]).

To compute a trigonometric function, it is first necessary to select whether you
plan to measure angles in degrees or radians. The current selection is displayed
in the upper right on the screen. To change the selection press z.

Example: Sine of 30° = ?

ENTER PRESS DISPLAY REMARKS
30 s 0.5 Angle selection "Degrees"

Note that this operation was basically the same as the previous example except for
the additional step of selecting the angular mode. Later on I will show you how to
have a program select the angular mode.

You have noticed that the lower case n and s were pressed in the last two
examples. This implies that the letter keys have two functions or meanings. The
mathematical or special function of the keys utilizes the lower case letter.
Whereas the upper case letters are reserved for user-defined functions. Also, for
the Model 4, the function keys F1, F2, F3, RIGHT·SHIFT·F1, RIGHT·SHIFT·F2, and
RIGHT·SHIFT·F3, are programmed to be A, B, C, D, E, and F respectively. This does
not apply to a Model III operating system running on a Model 4.

EXECUTING PROGRAMS

Now you have come to the most interesting and useful aspect of ASTROCAL ── its
ability to execute a program. This is, after all, what ASTROCAL is all about ──
executing programs to solve problems. To demonstrate this mode I have selected
ANNUITY/CAL that is provided on your ASTROCAL disk. But, before you load this
program, be sure you have selected ASTROCAL[6]. ASTROCAL[6] is selected from the
ASTROCAL menu. You return to the ASTROCAL menu by pressing SHIFT·BREAK twice. The
first time you press SHIFT·BREAK, a flashing "BREAK" appears. If you press any key
other than [SHIFT·]BREAK, then the keystroke is ignored and the flashing "BREAK"
disappears. By pressing SHIFT·BREAK with the flashing "BREAK" displayed, you are
returned to the ASTROCAL menu. If you press <BREAK> with the flashing "BREAK",
then you will exit ASTROCAL. Once you are in the ASTROCAL menu, press the 6 key to
initialize ASTROCAL[6].

INTRODUCTION

 Page 5

Example: Ordinary Annuity Computations. Given three of four variables as inputs,
solve for the remaining variable in the annuity equations.

Present value: PV = MPMT x (1-(1+I÷1200)-(Nx12))÷(I÷1200)
Monthly payment: MPMT = PV x (I÷1200)÷(1-(1+I÷1200)-(Nx12))
Years: Y = -loge(1 - PV x ((I÷1200)÷MPMT))÷loge(1+I÷1200)÷12
The interest, I, rate is solved using an iterative method.

To solve this problem, enter the program mode by pressing CTRL·p (when you see a
key sequence similar to CTRL·p, this means press and hold the CTRL key; and, while
holding this key down with one appendage, also press the P key). For the Model I
and Model III, SHIFT·↓ is the control key.
You should see:
 PROG Degrees
 Location Code Instruction

 > 0000 000
 0001 000
 0002 000
 0003 000

Now press CTRL·l. You will then be prompted with a "Filespec:" prompt. Key in
annuity/cal, then press <ENTER>. (NOTE: Whenever you enter the program mode,
ASTROCAL resets the CAPS mode (you will be in lower-case). Also ASTROCAL converts
the case, if necessary, when you enter a filespec.) After the program is loaded
into ASTROCAL's program memory, press CTRL·p to return to the calculate mode. Now
you are ready to solve some annuity problems.

The instructions for using the program are:

STEP PROCEDURE PRESS DISPLAY
1 Initialize Z 0.
2 Input 3 of 4 arguments
 (in any order):

 Present value V PV
 Payment per month O MPMT
 Number of years Y Y
 Annual interest rate in percent I I

3 Compute unknown value:
 Present value U PV'
 Payment per month P MPMT'
 Number of years T Y'
 Annual interest rate in percent J I'

4 To solve a new problem go to
 STEP 2. You need to enter only
 those variables that change.

INTRODUCTION

Page 6

Are you wondering: How do I go from the calculate mode to the execute mode? The
answer is every time you press upper case A through Z (the user-definable label
keys) ASTROCAL changes from the calculate mode to the execute mode and begins
executing the instructions in the program memory following the label. When
ASTROCAL has completed execution, ASTROCAL returns to the calculate mode.

Example: Calculate the monthly payments on a 30-year basis for a $40,000 loan at
an 8.75% annual interest rate. Also calculate the payments for this loan on a
20-year basis.

ENTER PRESS DISPLAY REMARKS
 Z 0. Initialize (upper case Z)
30 Y 30. Y
40000 V 40000.00 PV
8.75 I 8.75 I
 P 314.68 MPMT' (30 years)
20 Y 20. Y1
 P 353.48 MPMT'1 (20 years)

Example: What is the annual interest rate of a $45,900 mortgage, for 30 years,
with $361.10 monthly payments?

ENTER PRESS DISPLAY REMARKS
45900 V 45900.00 PV
30 Y 30. Y
361.10 O 361.10 MPMT
 J 8.75 I'

To solve these examples, it was not necessary for you to perform all the detailed
keystrokes necessary to set up and execute the problem in the calculate mode. You
don't even have to know the equations used. Please press SHIFT·Z to clear ASTROCAL
before you go to the next section.

CREATING YOUR OWN PROGRAMS

The program mode enables you to create programs by entering them directly into
program memory. The basic operating instructions to accomplish this are simple:
Enter the program mode by pressing CTRL·p and define the program by keying in the
proper sequence of instructions. When your program is complete in program memory,
you can save it on a disk. Transfer out of the program mode by pressing CTRL·p
again. However, there is a certain amount of activity that is necessary prior to
your keying in the program. This is the phase where you determine your objectives,
assemble the equations you need, and finally write down the actual program
instructions.

Example: In a compound-interest problem, what is the future value given the other
three variables as input quantities? There is no single program sequence for this
problem. I will discuss two different ways it can be achieved.

INTRODUCTION

 Page 7

METHOD 1

The easiest way to write a program to solve future value, FV, is just to copy the
keystrokes that would be used in the calculate mode, except that where you would
enter data, a HALT instruction, BREAK, would be used to allow entry of data from
the keyboard at that point. Execution would then be resumed by pressing
SHIFT·ENTER, Execute. From the equation for future value, FV = PV x (1+(i÷1200))n,
the key sequence in the calculate mode would be as follows:

ENTER PRESS
Present Value (PV) *(
1 +(
Annual interest rate(i) /
1200))→
Number of periods(n) =

Verify that the above sequence correctly solves for the future value with PV =
500, i = 5.75% annually, and n = 24 months.

ENTER PRESS DISPLAY REMARKS
500 * 500. PV
 (500.
1 + 1.
 (1.
5.75 / 5.75 i
1200) .0047916667 i ÷ 1200
) 1.004791667 1 + i ÷ 1200
 → 1.004791667
24 = 560.7826821 FV

A program that is a literal automation of the foregoing calculate mode keystrokes
would be the following:

KEY SEQUENCE INSTRUCTION REMARKS
SHIFT·@ LABEL (Giving ASTROCAL a place to go when
SHIFT·K K you press K to solve the problem.)
: x : or * may be used for multiply
((
1 1
; + ; or + may be used for add
((
BREAK HALT to allow entry of i
/ / divide
1 1
2 2
0 0
0 0
))
))
→ Exponent
BREAK HALT to allow entry of n
ENTER = = or ENTER can be used for equal
BREAK HALT to display the answer

INTRODUCTION

Page 8

Note how I have labeled this program at the beginning so ASTROCAL will find its
destination when K is pressed.

Now key this program into ASTROCAL's program memory. First, press CTRL·p to enter
the program mode. Second, press SHIFT·↑ to position the program counter to
position 0000. Now press CTRL·t to clear the program already in program memory.
(Note: If you had saved this program, and now are loading it from disk, the load
function automatically performs the resetting [set to 0000] of the program counter
and the clearing of program memory.) Carefully key in the instructions listed
above. If you make a mistake, press SHIFT·↑, CTRL·t and start over again. (Later
you will learn how to correct mistakes without starting over.) At the conclusion
of keying in the program instructions you should see:
 PROG Degrees
 Location Code Instruction
 0016 002 HALT
 0017 061 =
 0018 002 HALT
 > 0019
 0020
 0021
 0022

This indicates the next instruction would go into location 0019, currently empty.
To enable execution of the program, transfer from the program mode to the
calculate mode by pressing CTRL·p. This now enables you to execute the program you
have keyed into program memory. The instructions for using this program are as
follows:

STEP ENTER PRESS REMARKS

1 PV SHIFT·K Begins program execution

2 i SHIFT·ENTER Resumes execution

3 n SHIFT·ENTER Resumes execution

Try the case already worked out (remember upper case K), with PV = 500, i = 5.75,
and n = 24, with the answer being 560.7826821.

This program is not as easy to use as ANNUITY/CAL. Obviously data had to be
entered in a definite order. And, not so obvious, the calculator cannot be used
for intermediate calculations during program halts. The next method demonstrates
improved programming techniques to solve the interest problem.

INTRODUCTION

 Page 9

METHOD 2

In this method I will design the program much more along the lines of ANNUITY/CAL.
I will use the labels P, I, and N to store the present value, interest rate, and
number of compound periods respectively into selected addressable memory
registers. After the data is entered, the calculation of future value, at label K,
recalls those data from addressable memory as needed. I have to decide which
addressable memory registers to use for PV, i, and n. For simplicity, I will
select register 01 for PV, register 02 for i, and register 03 for n. The segments
of code necessary to store the data into addressable memory are the following:

KEY SEQUENCE INSTRUCTION REMARKS
SHIFT·@ LABEL
SHIFT·P P
K STO MEM These three keys store PV into register 01.
0 0
1 1
BREAK HALT
SHIFT·@ LABEL
SHIFT·I I
K STO MEM These three keys store i into register 02.
0 0
2 2
BREAK HALT
SHIFT·@ LABEL
SHIFT·N N
k STO MEM These three keys store n into register 03.
0 0
3 3
BREAK HALT

I still need to define the program segment to calculate FV from the quantities in
the addressable memory registers. This is achieved like the program in Method 1,
except for the addressable memory reference.

KEY SEQUENCE INSTRUCTION KEY SEQUENCE INSTRUCTION
SHIFT·@ LABEL / /
SHIFT·K K 1 1
m RCL MEM 2 2
0 0 0 0
1 1 0 0
: x))
(())
1 1 → Exponent
; + m RCL MEM
((0 0
m RCL MEM 3 3
0 0 ENTER =
2 2 BREAK HALT

INTRODUCTION

Page 10

To use the METHOD 2 program, first go to the program mode by pressing CTRL·p.
Clear program memory by pressing SHIFT·↑, and CTRL·t. Now key in all instructions
beginning with SHIFT·@ in the program segment labeled P, and ending with BREAK in
the program segment labeled K. If you performed these steps properly you will see
the program counter positioned at location 0044, indicating that the next free
program location is 0044.

Now press CTRL·p to return to the calculate mode, and test your program using the
following procedure:

STEP PROCEDURE PRESS DISPLAY
1 Enter PV, i, and n in any
 sequence:
 Present value PV P PV
 annual interest rate(%) i I i
 number of periods n N n
2 Calculate future value K FV

Sample test:

ENTER PRESS DISPLAY REMARKS
5.75 I 5.75 i (note order of input)
24 N 24. n
500 P 500. PV
 K 560.7826821 FV

This introduction to ASTROCAL should enable you to begin solving a few problems.
You will find that optimizing the use of ASTROCAL is a rewarding experience. The
following sections are designed to help you develop your problem solving ability.

PRECISION AND ACCURACY

Before we go on to the next section, let us discuss two important facts: PRECISION
and ACCURACY.

The precision of ASTROCAL is selected from the ASTROCAL menu. The available
precision also determines the display sizes. The number of digits in the display
is represented in the following sections as [DISPLAY SIZE]. The precision/display
sizes are: 119/72 (119/56 Model I/III) for ASTROCAL[1], 79/72 (63/56 Model I/III)
for ASTROCAL[2], 39/32 for ASTROCAL[3], 21/14 for ASTROCAL[4] (n/a Model I/III),
19/12 for ASTROCAL[5], and 17/10 for ASTROCAL[6]. The display-register sizes are
the same as the precision: 119, 72(63), 39, 21(n/a), 19, and 17 digits
respectively.

The accuracy of ASTROCAL is typically one digit less than the selected precision
when a non-linear math function (other than add, subtract, multiply, or divide) is
used. The accuracy will typically, not necessarily, lose one digit per non-linear
math function (this is why the display size is less than the selected precision ──
to display an accurate result).

ENTERING AND DISPLAYING NUMBERS

 Page 11

Now I will return to basics and begin a more thorough description of ASTROCAL's
operation. Remembering that generally any description that pertains to calculate
mode keystrokes also applies when the keystrokes are made in the program mode and
processed in the execute mode.

ENTERING NUMBERS

Any number up to [DISPLAY SIZE] digits can be keyed in by using the number keys
and the decimal key. The procedure for entering a positive number is simply to
press the keys in sequence exactly as the number appears.

Example: Enter 305.5050463

ENTER PRESS DISPLAY
 CLEAR 0
305.5050463 305.5050463

The decimal point entry is not needed to enter an integer. ASTROCAL automatically
supplies the decimal when any operation key is pressed.

Example: Enter 9358

ENTER PRESS DISPLAY
 CLEAR 0
9358 - 9358.

Decimal point entry is required for numbers less than one, a leading zero is
automatically displayed for clarity.

Example: Enter 0.02345

ENTER PRESS DISPLAY
 CLEAR 0
.02345 0.02345

Negative numbers are entered just like positive numbers except that the
change-sign (+/-) key, o, is pressed as the final step of entry.

Example: Enter -9358.02345

ENTER PRESS DISPLAY
 CLEAR 0
9358.02345 o -9358.02345

The change-sign key can be used to change the sign of the displayed quantity at
any time.

As you enter a number in the calculate mode, that number is shown on the display,
including the decimal point and sign. If you make a mistake, simple press the
clear-digit/error key, SPACE, to remove (backspace) the last digit entered. If
more than [DISPLAY SIZE] digits are attempted in number entry, all digits after
[DISPLAY SIZE] are ignored.

ENTERING AND DISPLAYING NUMBERS

Page 12

ENTERING π

As a convenience, ASTROCAL provides a means of entering π by pressing a single
key, p. Use of this key to enter π turns out to be more than just a convenience. A
full register size representation of π results from this operation. (You are
restricted to only [DISPLAY SIZE] when the manual number entry method is used.)
The display always rounds to [DISPLAY SIZE] or fewer digits, so the extra digits
are not visible, but they are carried in all subsequent calculations.

Example: Enter π

ENTER PRESS DISPLAY
 p 3.141592654

The value of π used in ASTROCAL[6] is 3.1415926535897932 even though the display
only shows the value rounded to ten significant digits.

SCIENTIFIC NOTATION

To enter very large or very small numbers you must use scientific notation where
the number is expressed as the product of a number and a power-of-ten (either
positive or negative). This first number is referred to as the mantissa, and the
second, the power-of-ten, is called the exponent. The full procedure, therefore,
is to key in the mantissa (including its sign) then press the enter-exponent key,
e, and finally key in the power-of-ten.

Example: Enter 4.243 x 10109

ENTER PRESS DISPLAY
 CLEAR 0
4.243 e 4.243 0000
109 4.243 0109

Regardless of how the number is entered, ASTROCAL normalizes the number,
displaying a single digit to the left of the decimal when any operation key is
pressed.

Example: Enter 4243 x 10106

ENTER PRESS DISPLAY
 CLEAR 0
4243 e 4243 0000
106 4243 0106
 + 4.243 0109

ENTERING AND DISPLAYING NUMBERS

 Page 13

The change-sign key can again be used to assign a negative sign to the mantissa
and to the power-of-ten exponent.

Example: Enter -5.781 x 10-86

ENTER PRESS DISPLAY
 CLEAR 0
5.781 o e -5.781 0000
86 o -5.781 -0086

If you wish to change the sign of the mantissa after the exponent has been
entered, just press . o (decimal then o). If the numerical value of the mantissa
needs to be changed, press SPACE to remove (backspace) any unwanted digits.
Holding down the space bar will remove all digits. Also CLEAR may be pressed if
you don't have any calculations pending.

Example: Change the number displayed in the last example to 5.781 x 10-86

ENTER PRESS DISPLAY
 . o 5.781 -0086

The exponent size is limited to numbers no longer than four digits. This provides
a range of power-of-ten from 109999 to 10-9999. Note, however, that ASTROCAL will
experience Too-small whenever the calculations result in numbers less than 1 x
10-9999 and greater than zero, and Overflow whenever the calculations result in a
number equal to or greater than 10 x 109999 in magnitude. A flashing "ERROR" results
from these situations.

ADVANCED EFFECTS AND USES OF THE ENTER-EXPONENT KEY

Pressing the ENTER-EXPONENT key, e, causes several things to take place:

 1. The display mode is set to scientific notation.

 2. The four-digit registers for holding the exponent are initialized to zero

unless the number in the display-register has an assigned exponent.

 3. Number key entries immediately following e along with the pre-existing value

of the exponent (if any) are interpreted so that the last four digits entered
form the exponent. The earlier entered digits are discarded.

 4. The rounded value of the mantissa actually shown in the display is loaded into

the display-register for subsequent calculations. This can be a useful
feature.

The first effect is obvious. The second and third effects are illustrated in the
following example.

ENTERING AND DISPLAYING NUMBERS

Page 14

Example: Solve the problem (3 x 1082) x (6 x 1046) and change the exponent of the
results to 3.

ENTER PRESS DISPLAY
 CLEAR 0
3 e 3 0000
82 * 3. 0082
6 e 6 0000
46 = 1.8 0129
 e 1.8 0129
0 1.8 1290
0 1.8 2900
0 1.8 9000
3 1.8 0003

Observe that the first two times e was pressed following a number entry, the
exponent digits were initialized to 0000. When e is used following a result, the
exponent digits are unchanged and only the last four numbers entered are used as
exponent digits.

I will use the π key to illustrate the fourth effect of the e key.

Example: π-π <> 0

ENTER PRESS DISPLAY
 CLEAR 0
 p - 3.141592654
 p e 3.141592654 0000
 = -4.102068 -0010

As previously indicated, when π is used, ASTROCAL internally uses
3.1415926535897932. Pressing p then e, however, caused ASTROCAL to use only the
displayed number ── discarding all digits not displayed. The calculation that took
place was actually (3.1415926535897932 - 3.141592654) which equals
-0.0000000004102068 or -4.102068 x 10-10. Note that this last effect of the e key
affects only the number displayed at the time e is pressed.

CLEARING INCORRECT NUMBER ENTRIES

To clear an incorrect digit entry from the keyboard, press the clear-digit/error
key, SPACE, and key the proper digit. SPACE clears only entries from the keyboard,
not results of calculations, pending calculations, or π. There are other types of
clearing operations for ASTROCAL and other keys for accomplishing them.

CLEARING A CALCULATION

One of these additional clearing operations is the clear key, CLEAR. Pressing this
key clears the display and clears all calculations in progress to ensure your new
problem is not affected by operations not completed from a previous problem. The
CLEAR key does not affect the contents of the addressable memory registers or
program memory.

ENTERING AND DISPLAYING NUMBERS

 Page 15

DISPLAY CONTROL

ASTROCAL display gives you a controllable-format representation of the number in
the display-register. The display-register like all other registers in ASTROCAL is
119, 79, 39, 21, 19, or 17 digits long (ASTROCAL[1-6] respectively). For display,
this number is rounded to [DISPLAY SIZE] (72, 72, 32, 14, 12, or 10) or fewer
digits. See page 10 for Model I and Model III sizes.

When ASTROCAL in initialized it is in the initial display mode. In this mode all
numbers are displayed without the power-of-ten present in scientific notation.

ENTER PRESS DISPLAY
 CLEAR 0
6 / 6.
3 = 2.

2 / 2.
6 = .3333333333

200 / 200.
6 = 33.33333333

The number of digits displayed following the decimal point is as many as required
within the maximum limit of [DISPLAY SIZE] digits to represent the number.

Whenever you enter a number in scientific notation or the number resulting from a
calculation is less than 10-([DISPLAY SIZE]+1) or equal to or greater than 10[DISPLAY SIZE] in
magnitude, the display automatically converts to scientific notation. The exponent
is shown by four digits set off to the right of the others on the display. If the
exponent is negative, a negative sign appears just to the left of these four
digits. The mantissa shown on the display is always in the range 1<=|mantissa|<10.
A mantissa greater than this can be keyed in, however, as soon as any operation,
function, or storage key is pressed, the mantissa is converted to the above range.

Displaying the mantissa with as many digits as required up to the maximum of
[DISPLAY SIZE] digits is the initial mantissa format.

Example: (56.23 x 1012) x 7 = ?

ENTER PRESS DISPLAY
56.23 e 56.23 0000
12 56.23 0012
 * 5.623 0013
7 = 3.9361 0014

The display has switched from the initial display mode to scientific notation, but
the initial mantissa format has been preserved.

ENTERING AND DISPLAYING NUMBERS

Page 16

If you don't want to see all of the digits that can be present in the initial
mantissa format, you can cause all displayed results to be rounded to a fixed
number of places following the decimal point by pressing the fix decimal key, f,
and then enter the desired number of digits 00 to [DISPLAY SIZE]-1. The contents
of the display-register is shown with the mantissa rounded to the desired number
of digits, however, all calculations use the full unrounded value.

Example: 6 ÷ 7 = ? Round to two decimal places.

ENTER PRESS DISPLAY
 CLEAR 0
6 / 6.
7 = .8571428571
 f 02 .86

The result is shown rounded to hundredths. Similarly, work the following example
in scientific notation.

Example: (6 x 1012) ÷ 7 = Rounded to five decimal places.

ENTER PRESS DISPLAY
6 e 6 0000
12 / 6.00 0012
7 = 8.57 0011
 f 05 8.57143 0011

There are two methods to return the display to the initial mantissa format.
Pressing f nn where nn is => [DISPLAY SIZE], or pressing @f restores the display
to the initial mantissa format without affecting scientific notation. The @ key is
the inverse function key, "Inverse".

To convert the display from scientific notation press @e. This does not affect
pending operations or the number of digits carried. If the display is in Fix Dec.
mode and the number is less than 5x10-[NUMBER OF FIXED DECIMALS] in magnitude, then the
mantissa will display zeroes. If the number is equal to or greater than 10[DISPLAY
SIZE] regardless of Fix Dec., the display remains in scientific notation.

Example: 2 ÷ (4 x 104) = ?

ENTER PRESS DISPLAY
 CLEAR 0
 @ f 0.
2 / 2.
4 e 4 0000
4 = 5. -0005
 f 03 5.000 -0005
 @ e 0.000
 f 04 0.0001
 f 05 0.00005
 f 06 0.000050

ENTERING AND DISPLAYING NUMBERS

 Page 17

There are several approaches to convert to scientific notation. First you could
simply press e =. Remember this method has consequence of loading the
display-register with the rounded quantity displayed. The other methods involve
multiplying/dividing the number by 1 x 100 or adding/subtracting 0 x 100 to/from
the displayed number.

ENTER PRESS
 *
1 e =

ENTER PRESS
 +
0 e =

ENTER PRESS
 /
1 e =

ENTER PRESS
 -
0 e =

Because = completes all pending operations, do not use these methods in the middle
of a computation. Pending operations and the effect of = are discussed later in
this manual. To avoid this problem, use these conversion methods after
computations are complete, or properly interject the method without the =
keystroke.

ERROR CONDITIONS

Various error conditions during computation in either the calculate or execute
modes result in a flashing "ERROR" displayed. The quantity in the display is
usually a clue to the type of error involved. I will deal with each error
condition in its appropriate place, listing only the two most common errors here.

Overflow ── Signifies a result whose magnitude is larger than the maximum that can
be handled by ASTROCAL (=> 10 x 109999) and results in a flashing "ERROR". This can
be interpreted as infinity as in the case of division by zero.

Too-small ── Indicates a result that is not zero but whose magnitude is too small
to be handled by ASTROCAL (< 1 x 10-9999). This condition also displays a flashing
"ERROR".

The flashing "ERROR" can be removed by pressing the clear-digit/error key, SPACE,
without affecting the displayed number unless the number was just keyed in prior
to pressing SPACE ── in this case, the entire number is cleared. Also, entering
the program mode removes the flashing "ERROR".

ENTERING AND DISPLAYING NUMBERS

Page 18

Under the condition when the resulting calculation is less than 10 x 109999, but the
prevailing mantissa format would round the number to 10 x 109999; ASTROCAL will not
cause "ERROR" to flash, displaying 10 x 109999. However, an e press would cause 1 x
109999 to be set in the display-register.

Example: Overflow and 10 x 109999

ENTER PRESS DISPLAY REMARKS
 CLEAR 0
 @ f 0.
 r 9.999999999 9999 "ERROR" flashing caused by

overflow.
 SPACE 9.999999999 9999 "ERROR" stops flashing
 f 08 10.00000000 9999 improper mantissa but valid

number.
 / 10.00000000 9999
2 = 5.00000000 9999 validates number
 * 5.00000000 9999
2 = 9.99999999 9999 "ERROR" flashing caused by

overflow.
 SPACE 9.99999999 9999 "ERROR" stops flashing
 f 08 10.00000000 9999 to re-display mantissa
 e 10.00000000 9999 Stores 1 x 109999 into

display-register.
 / 1.00000000 9999 evidenced by an operation key

press.

This is the only condition that the mantissa has 2 digits to the left of the
decimal when the display is in scientific notation. Its purpose is to avoid an
overflow error condition caused by rounding the display to less than [DISPLAY
SIZE] digits when an actual overflow did not occur.

Please press @f and CLEAR before you move on to the next section.

ARITHMETIC CALCULATIONS

 Page 19

BASIC OPERATIONS

To perform simple addition, subtraction, multiplication or division, the procedure
is to key in the problem just as it is written.

 Enter the first number
 Press + - * or /
 Enter the second number
 Press =

Pressing CLEAR at the beginning of this sequence clears any calculations in
progress.

Example: (3.2 x 10-23) x (4.125 x 1056) = ?

ENTER PRESS DISPLAY
3.2 e 3.2 0000
23 o * 3.2 -0023
4.125 e 4.125 0000
56 = 1.32 0034

CHAINED OPERATIONS

After a result is obtained in one calculation it may be directly used as the first
number in a second calculation. There is no need to reenter the number from the
keyboard.

Example: 3.42 + 2.04 = ? then (3.42 + 2.04) ÷ 256 = ?

ENTER PRESS DISPLAY REMARKS
 CLEAR 0
3.42 + 3.42
2.04 = 5.46 3.42 + 2.04
 / 5.46
256 = 0.021328125 5.46 ÷ 256

In this way an indefinite number of operations may be chained together, entering
each operand only once.

ARITHMETIC CALCULATIONS

Page 20

A SPECIAL TYPE OF OPERATIONAL CHAIN

The foregoing discussion of chaining, or using the result of one calculation as
the first number of the next calculation, involved pressing = for each
calculation, thereby obtaining the whole chain of intermediate results as well as
the final answer. Of course you would prefer not to have to press = except at the
end. You may do this with two types of chains. These are:

 1) Chains containing only + and - operations.
 2) Chains containing only x and ÷ operations.

To evaluate expressions of this type, simply key in the numbers and operations
keys the way the problem is written and finally press = to get the answer.

Example: 56 + 856 - 23 + 123 - 12 = ?

ENTER PRESS DISPLAY REMARKS
56 + 56.
856 - 912. 56 + 856
23 + 889. 56 + 856 - 23
123 - 1012. 56 + 856 - 23 + 123
12 = 1000.

Example: 35 x 4.1 ÷ 7 x 12 x 9 = ?

ENTER PRESS DISPLAY REMARKS
35 * 35.
4.1 / 143.5 35 x 4.1
7 * 20.5 35 x 4.1 ÷ 7
12 * 246. 35 x 4.1 ÷ 7 x 12
9 = 2214.

ARITHMETIC CALCULATIONS

 Page 21

PARENTHESES

To introduce this subject, you should try the following experiment:
Press CLEAR (5 * 7), and you will see the displayed value 35. ASTROCAL has
evaluated 5 x 7 and replaced it with 35, even though the = key was not pressed.
This behavior is a consequence of the following operating characteristic designed
into ASTROCAL: whenever an expression is set off by parentheses, that is
([expression]), ASTROCAL evaluates that expression then use its value in any
larger expressions of which it is a part. This evaluation is properly carried out
even if the expression set off by parentheses contains other expressions that are
also set off by parentheses. As the keystroke sequence containing parentheses is
processed, ASTROCAL stores into internal processing registers those operands that
cannot yet be combined with other operands.

Starting with (does not usually require using CLEAR because the number entry
replaces the number displayed when (is pressed. Examples in this manual beginning
with CLEAR (include the clear operation for the convenience of showing the
display contents for each step.

Example: (3+(4÷(7-(6÷(1+2))))) = ?

KEYSTROKES ASTROCAL ACTION
(Set up to evaluate expression.
3 + Store 3 internally, marked for pending addition.
(Set up evaluation for second-level parentheses.
4 / Store 4 internally, marked for pending division.
(Set up evaluation for third-level parentheses.
7 - Store 7 internally, marked for pending subtraction.
(Set up evaluation for fourth-level parentheses.
6 / Store 6 internally, marked for pending division.
(Set up evaluation for fifth-level parentheses.
1 + Store 1 internally, marked for pending addition.
2) Recognize 1 +2 may now be performed. Replace 1 +2 with 3.
) Recognize 6 /3 may now be performed. Replace 6 /3 with 2.
) Recognize 7 -2 may now be performed. Replace 7 -2 with 5.
) Recognize 4 /5 may now be performed. Replace with 0.8
) Recognize 3 + 0.8 may mow be performed. Replace with 3.8

Key in this example and notice the display as each right parenthesis is pressed.

ARITHMETIC CALCULATIONS

Page 22

When the first right parenthesis was encountered in this example, ASTROCAL had
stored five operands, each associated with an operation pending, into the internal
processing registers. Closing the final parentheses in this example caused the
whole expression to cascade down to a single evaluated number, ASTROCAL
recognizing at exactly what point each pending operation could be completed. The
rule that results from all this is simple from the user's point of view. To
evaluate an expression containing parentheses, key in the expression just as it is
written. Not only does this design feature allow you to use parentheses with
ASTROCAL just as you do in your analytical work, it also saves your addressable
memory for purposes other than for storing operands that have operations pending.
In making optimal use of the internal processing registers, the natural keystroke
sequence with parentheses is easy and natural, and is efficient in memory usage.
In addition, when you program ASTROCAL to deal with parenthetical expressions, you
are obtaining the most efficient operation from an execution time point of view as
well as the program code whose intent remains clear long after it is written.

There are limits on how many pending operations and operands can be entered into
the internal processing registers. This limit, though large enough that you will
probably never be aware that it exists, can accommodate as many as 85 pending
operations containing up to 36 open parentheses. If you attempt to open more than
36 parentheses, "ERROR" will flash and the left parenthesis is ignored. If you
attempt to create more than 85 operations pending, "ERROR" will flash and the
operation will be ignored. See page 1 for the number of pending operations
available for the MAX-80, and the Model I/III.

THE USE OF = IN COMPLICATED EXPRESSIONS

There is one other feature related to pending operations that you will find
particularly important. The effect of pressing = in any calculation (or
encountering = in any program) is to complete all pending operations. It does not
matter that the right parentheses associated with existing left parentheses have
not all been keyed, for the = key has the effect of immediately supplying as many
right parentheses as necessary to complete the expression. Again, key in the last
example, substituting an = for the five right parentheses.

Example: -12.5+((8.12 -8)÷(8.12 +8)) = ?

ENTER PRESS DISPLAY REMARKS
12.5 o + ((-12.5
8.12 - 8.12

8) / (.12 8.12 - 8
8.12 + 8.12
8 = -12.49255583

The = supplied the last two right parentheses in this evaluation.

SPECIAL FUNCTIONS

 Page 23

The simplest operations of all to describe and understand are probably the
single-variable functions of ASTROCAL. I will, therefore, first describe these
functions, then go on to the functions of two variables, and finally discuss
angular unit conversions (that are really functions of a single-variable).

FUNCTIONS OF A SINGLE-VARIABLE

At any point in a calculation, you can replace the value in the display-register
with the implied operation represented by any of the following keys.

 PROGRAM INSTRUCTION
 KEY FUNCTION LEGEND
 ! Factorial !
 c Cosine Cosine
 l Common logarithm (log10) LOG 10
 n Natural logarithm (loge) LOG e
 q Square Square
 r Reciprocal 1/x
 s Sine Sine
 t Tangent Tangent
 y Cube Cube

Hyperbolic cosine, sine, and tangent functions of the displayed quantity is
obtained by pressing the hyperbolic function key, h, before the c, s, or t key.
Hyperbolic cosine is abbreviated as cosh, hyperbolic sine is abbreviates as sinh,
and hyperbolic tangent is abbreviates as tanh.

Example: 70! = ?

ENTER PRESS DISPLAY
70 ! 1.197857167 0100

Example: log102 = ?

ENTER PRESS DISPLAY
2 l .3010299957

Example: 32 = ?

ENTER PRESS DISPLAY
3 q 9.

Example: sin 0.785r = ?

ENTER PRESS DISPLAY REMARKS
 CLEAR 0
 z 0 "Radians" displayed
.785 s .7068251811

SPECIAL FUNCTIONS

Page 24

In addition to the functions listed, the following inverse functions are also
available by use of the inverse key, @, prefix:

FUNCTION PRESS
10X, antilogarithm (common) @ l
eX, antilogarithm (natural) @ n
arc cosh @ h c or h @ c
arc cosine @ c
arc sine @ s
arc sinh @ h s or h @ s
arc tangent @ t
arc tanh @ h t or h @ t
cube-root @ y
square-root @ q

Example: 106.7 = ?

ENTER PRESS DISPLAY
6.7 @ l 5011872.336

Example: arc cosh 3.8 = ?

ENTER PRESS DISPLAY
3.8 @ h c 2.010367491

Example: arc tan 1 = ?

ENTER PRESS DISPLAY
1 @ t .7853981634
 __
Example: √7 = ?

ENTER PRESS DISPLAY
7 @ q 2.645751311

When a single-variable function is activated, its effect is immediate. The
display-register contents are replaced with the function value without any effect
upon pending operations. The effect is as though one were to have keyed in the
special function value at that point.

Example: 9 + √28 + 8 = ?

ENTER PRESS DISPLAY
 CLEAR 0
9 + 9.
 (9.
28 + 28.
8) 36.
 @ q 6.
 = 15.

SPECIAL FUNCTIONS

 Page 25

To show that pending operations are not affected by a single-variable function,
perform the following key sequence:

ENTER PRESS DISPLAY REMARKS
 CLEAR 0
28 + 28. 28 is stored with + pending.

8 - 36. 28 + 8 is completed and then

stored with - pending.

 @ q 6. 6 replaces 36 in the

display-register. Now to verify
that the pending operation will
not be affected.

12 = 24. The final pending operation

(subtraction) is completed giving
36 - 12 = 24.

Some of the single-variable functions have restrictions on the values of their
arguments, in addition to those necessary to avoid overflow and too-small. When
these restrictions are violated "ERROR" flashes. These restrictions are summarized
here:

 FUNCTION ARGUMENT RANGE DISPLAY
 __ __
 √x x => 0 √|x|
 arc cosh x x => 1 x
 arc cosine x |x| <= 1 x
 arc sine x |x| <= 1 x
 arc tanh x |x| < 1 x
 cosine x |x| < 10[PRECISION] |x|
 log10x x > 0 log10|x|
 logex x > 0 loge|x|
 sine x |x| < 10[PRECISION] |x|
 tangent x |x| < 10[PRECISION] |x|
 x! 3249 > integers => 0 |INT(x)|!

Unlike the other functions, the factorial function operates only on the rounded
number displayed, not upon the number of digits in the display-register.

Angular Mode Selection ── The trigonometric functions including the inverse
trigonometric functions and coordinate conversion (Polar to Rectangular or
Rectangular to Polar) involve knowledge about units. Are the angles expressed in
units of degrees or units of radians? You have noticed the "Degrees" or "Radians"
displayed in the upper right on the screen. The angular mode has absolutely no
effect except when a trigonometric function or coordinate conversion is being
performed. You may therefore change this mode at any intermediate point in a
calculation. The mode selected is indicated for each problem in this manual that
depends on the angular mode ── ANGLE:Degrees means set the mode to "Degrees" and
ANGLE:Radians means set the mode to "Radians".

SPECIAL FUNCTIONS

Page 26

Example: sin 30° = ?

ANGLE:Degrees
ENTER PRESS DISPLAY
 CLEAR 0
 z 0
30 s 0.5

Example: arc sin .5 = ? in radians

ANGLE:Radians
ENTER PRESS DISPLAY
 CLEAR 0
 z 0
.5 @ s .5235987756

As previously mentioned, you can program ASTROCAL to select the angular mode
during program execution. The labels "(" and ")" in these examples are not
critical; you may use any label not used in the balance of your program.

Code segment to force the angular mode to radians:

 Location Code Instruction
 0010 096 LABEL
 0011 040 (
 0012 049 1
 0013 045 -
 0014 064 Inverse
 0015 116 Tangent
 0016 061 =
 0017 037 If pos
 0018 041)
 0019 122 Sw MODE
 0020 096 LABEL
 0021 041)

Code segment to force the angular mode to degrees:

 Location Code Instruction
 0010 096 LABEL
 0011 040 (
 0012 049 1
 0013 045 -
 0014 064 Inverse
 0015 116 Tangent
 0016 061 =
 0017 064 Inverse
 0018 037 If pos [% key]
 0019 041)
 0020 122 Sw MODE
 0021 096 LABEL
 0022 041)

SPECIAL FUNCTIONS

 Page 27

FUNCTIONS OF TWO VARIABLES

ASTROCAL provides two functions of two variables. The first function is powers,
accessed by the → key. The second is roots, accessed by the ← key. The rules for
these two functions are essentially identical:

 1. To raise x to the y power:
 [1] enter x
 [2] press →
 [3] enter y
 [4] press =

 2. To take the y root of x:
 [1] enter x
 [2] press ←
 [3] enter y
 [4] press =

Example: 4.32-.94 = ?

ENTER PRESS DISPLAY
4.32 → 4.32
.94 o -0.94
 = .2527232966

Example: What is the 4.97th root of 17.23?

ENTER PRESS DISPLAY
17.23 ← 17.23
4.97 = 1.773166643

Either the variable x or y or both can be the results of other computations that
may involve parentheses. Furthermore, parenthetical expressions may also contain
these functions.

Example: ((23.8 -3.14)/18)(22/19) = ?

ENTER PRESS DISPLAY REMARKS
 CLEAR 0
 ((0.
23.8 - 23.8
3.14) / 20.66
18) 1.147777778 value of x
 → 1.147777778
 (1.147777778
22 / 22.
19) 1.157894737 value of y
 = 1.173029801 value of xy

SPECIAL FUNCTIONS

Page 28

 4__

Example: (3x[4{2
-√ 7}]) = ?

ENTER PRESS DISPLAY REMARKS
 CLEAR 0
 (0.
3 * (3.
4 → (4.
2 → (2.
7 ← 7.
4) 1.626576562 the 4th root of 7
 o -1.626576562 -(4th root of 7)
) .3238557891 2 raised to - 4th root of 7
) 1.566681134 4 raised to 0.323···
) 4.700043401 3 times 4 raised to .323···

The = was not used in this example. The enclosure of the whole expression with
parentheses is sufficient to cause it to be evaluated, and the fact that power and
root functions occur does not in any way alter the basic parentheses disciplines
already described.

There is a restriction on these functions. If the variable x is negative, then the
root function produces an error. The variable x must also be non-negative for
powers if the exponent is not an integer. i.e., -2.32.2 produces an error, but
-2.312 does not (the sign of the result is negative if the exponent is odd;
otherwise, the sign is positive). In either case, if an error is produced, the
result will be the respective root or power of the absolute value of x, and
"ERROR" will flash. For powers, if the y value is 0 and the x value is not zero,
then the result is 1. For roots, if both the x and y values are 0, then the result
is also 1, but "ERROR" flashes indicating a mathematical indeterminate form.

ANGULAR UNIT CONVERSION

Four additional single-variable functions are provided. These are not standard
mathematical functions, but are angular-unit conversions, as shown below:

Function Press Effect
Degrees-to-radians d Multiplies displayed value by π/180.

Radians-to-degrees @ d Multiplies displayed value by 180/π.

Degrees-minutes-seconds b Converts a number entered in the
to decimal degrees degree-minute-second format to
 decimal degrees.

Decimal degrees to @ b Converts a number from decimal
degrees-minutes-seconds degrees to the degree-minute-second
format

SPECIAL FUNCTIONS

 Page 29

Example: Convert 122° to radians

ENTER PRESS DISPLAY
122 d 2.129301687

Example: Convert .5235987756r to degrees

ENTER PRESS DISPLAY
.5235987756 @ d 30.

The next two functions require the explanation of the degree-minute-second format.
These functions enable you to enter or display an angle expressed in degrees,
minutes and seconds. The actual format is given by DDD.MMSSsss... where:

 DDD denotes degrees,
 . separates degrees and minutes,
 MM denotes minutes,
 SS denotes seconds,
 and sss... denotes the decimal fraction of seconds.

The number of degree digits preceding the decimal and the number of s-digits
denoting the decimal fractional part of seconds are not required to be three as
shown, but are limited only by the display size.

Example: Convert 56°32'8.12" to decimal degrees

ENTER PRESS DISPLAY
56.320812 b 56.56558889

Example: Convert 22.13666667° to degrees-minutes-seconds

ENTER PRESS DISPLAY
22.13666667 @ b 22.0812

The displayed answer is interpreted as 22°8'12"

All of the angular unit conversion functions operate independently of the angular
mode. In other respects, they behave similarly to the usual single-variable
functions, affecting only the displayed quantity and not any other operands or
pending operations.

SPECIAL FUNCTIONS

Page 30

COORDINATE (POLAR/RECTANGULAR) CONVERSIONS

A special capability is provided by ASTROCAL to enable you to convert easily
between polar and rectangular coordinates. This coordinate conversion does involve
the addressable memory register 00.

The action of the polar-to-rectangular conversion is summarized in the table
below:

 Before After
Display-register Θ Y
Addressable memory register 00 R X

As shown in this table, with the radius R in addressable memory register 00, AM00,
and the angle in the display-register, the polar-to-rectangular conversion places
the cartesian coordinate X into AM00 and the cartesian coordinate Y into the
display-register. Pressing j activates the polar-to-rectangular conversion.

The inverse transformation, rectangular-to-polar, produces the results summarized
in the table below:

 Before After
Display-register Y Θ
Addressable memory register 00 X R

This is the reverse effect of the polar-to-rectangular transformation and is
activated by the sequence @j.

To use these transformations you must store and recall quantities using the
addressable memory register 00. The following examples show two possible key
sequences.

Example: Convert to Cartesian coordinates: R = 13, Θ = 43°

ANGLE:Degrees
ENTER PRESS DISPLAY REMARKS
13 k 00 13.
43 j 8.865978681 Value of Y
 m 00 9.507598121 Value of X

Example: Convert to polar coordinates (radians): X = 12, Y = 5

ANGLE:Radians
ENTER PRESS DISPLAY REMARKS
12 k 00 12.
5 @ j .3947911197 Θ
 m 00 13. Value of R

ALGEBRAIC NOTATION: MORE ABOUT PENDING OPERATIONS

 Page 31

THE ALGEBRAIC HIERARCHY

You have already read about how parentheses can be used on ASTROCAL just as they
are used in writing down algebraic expressions. You have also read about how these
parentheses cause certain operations to be pending, or held up until other
operations are completed. Again, this operating characteristic is also just like
the usual algebraic practice, for in normal algebraic usage the sequence of
operations appropriate to evaluating a given expression is affected (and defined)
by the parentheses occurring in that expression. Specifically in algebra, with a
set of nested parentheses, the expression must be evaluated from the innermost
level of parentheses outward. Two or more parenthetical expressions at the same
level of nesting may be evaluated in any sequence, once one has worked out to that
level. Although the sequence chosen in such cases is generally left-to-right.
These rules of normal procedure are probably so natural to you that you hardly
recognize them when they are formally stated. You don't really think of these
rules consciously; you just know how to proceed through the tedium of parentheses
evaluation.

Now this is important: ASTROCAL executes the operations in a complicated
expression in the exact sequence demanded by the foregoing rules. It does this
even though the expression has been keyed in just as it was written. You need not
look for the innermost level of parentheses; ASTROCAL will find it (and higher
levels) and retain the proper sequence.

There are certain additional rules, universally accepted, for identifying the
proper sequencing of operations in a complicated algebraic expression. These rules
pertain to the interpretation that should be made when the completely defining
compliment of parentheses is not present. As you have probably anticipated,
ASTROCAL is absolutely faithful to these additional rules as well. Suppose one has
the expression 7 x (6 + 2) x 9, the parentheses leave no doubt as to the meaning: 7
x 8 x 9 = 504. What would be the meaning of the expression if the parentheses were
removed? 7 x 6 + 2 x 9 = ?

There would appear to be several possibilities of interpretation. In addition to
the interpretation already given (leading to the answer 504) you could construct
the following:

 1. (7 x 6) + (2 x 9) = 42 + 18 = 60

 2. ((7 x 6) + 2) x 9 = (42 + 2) x 9 = 44 x 9 = 396

 3. 7 x (6 + (2 x 9)) = 7 x (6 + 18) = 7 x 24 = 168

ALGEBRAIC NOTATION: MORE ABOUT PENDING OPERATIONS

Page 32

There appears to be four different interpretations and, therefore, four different
answers. Without the parentheses the situation seems ambiguous, and the problem is
aggravated further when the expressions involved are longer. Is there a convention
that rules in favor of one of these four possible interpretations, or must we
always resolve such ambiguities by explicitly exhibiting the parentheses? The
answer to this question is that there is an accepted convention; and it is known
as the algebraic hierarchy. The rules of algebraic hierarchy tell us that unless
parentheses are present to indicate otherwise, division or multiplication should
be performed prior to addition or subtraction. So the answer to the earlier
question is 7 x 6 + 2 x 9 = 60. If you key that sequence with ASTROCAL, you will
get 60 as the answer.

To discuss the complete rules of algebraic hierarchy consider a more complicated
example:

 8 ÷ 12 x 9 + 4 x sin30°tan30° = ?

Again, there are no parentheses to make clear the sequence intended. All the rules
of algebraic hierarchy are required to resolve this case. These rules are as
follows:

Except as affected by any parentheses,

1. Immediately perform function evaluations.
2. Then perform exponentiation and root extraction.
3. Then perform multiplication and division.
4. Finally perform addition and subtraction.
5. Perform operations on each level left-to-right.

According to these rules the forgoing expression should be interpreted to mean

 (8 ÷ 12 x 9) + (4 x .5.5773502692)

The value of this expression is 8.680774244. Now see if you get that answer on
ASTROCAL. You will if you use the natural keystrokes:

 8 / 12 * 9 + 4 * 30 s → 30 t =

 (Did you remember to set the angular mode to degrees?)

To summarize, the interpretation of an expression is affected by the presence of
parentheses. In places where the absence of the parentheses would leave doubt as
to the proper operation sequence, that ambiguity is resolved by the rules of
algebraic hierarchy. ASTROCAL is designed to compute in the proper sequence as
determined by these rules and by any parentheses present. If you choose, you may
forget these rules and always use parentheses to determine completely the meaning
of expressions. On the other hand, if you become familiar with the algebraic
hierarchy, it can save you from having to enter one or more sets of parentheses in
most expressions.

ALGEBRAIC NOTATION: MORE ABOUT PENDING OPERATIONS

 Page 33

KEEPING TRACK OF DISPLAY REGISTER CONTENTS

You will soon learn about the use of addressable memory to store and recall data.
To know what quantity is being stored in response to a store command, k, "STO MEM"
from a program (or from the keyboard), you must be aware of what is contained in
the display-register. This is only possible if you become adequately familiar with
the subject of pending operations as discussed up to now and practice going
through calculations instruction by instruction, trying to anticipate what will be
displayed with each keystroke. This will facilitate your using the program mode
much more than using the calculate mode, because in executing a program you do not
see what is in the display-register as ASTROCAL races through the program code. So
practice in the calculate mode and you will greatly improve your effectiveness in
the program mode.

There is one characteristic of the display-register that I have not formally
explained: whenever a number is entered into the display-register, whether through
direct digit-key entry, recalled from addressable memory, or as the result of a
calculation, it writes over the prior contents of the display-register but does
not affect pending operations or the contents of other processing registers.

Example: 6 * 4 m94 =

This sequence produces the result 6 x M94, where M94 is the number stored in
addressable memory register 94. The 4 was obliterated by the m94.

Example: m82 m43 → m32 m74

This example is just to make the point again. The result of this sequence is M43
to the M74 power.

Example: 8 + 16.2 n 74 =

In this example the answer produced is 82. The 74 entry obliterated the natural
logarithm of 16.2 present in the display-register, but the pending addition and 8
stored in the internal processing registers were not affected. This example may
appear silly, for there is no purpose served by the natural logarithm of 16.2
calculation interjected where it was. However, the example shows that you could
harmlessly perform the natural logarithm of 16.2 calculation in the middle of the
unrelated problem 8 + 74 = 82. The fact that nothing was then done with the
natural logarithm of 16.2 result (such as storing it into addressable memory or
using it as the basis for a decision as discussed later) is not the main point.
You could have done something with the natural logarithm of 16.2 before
obliterating it. Hopefully, this simple example gives you further insight into the
workings of the internal processing registers and the display-register.

ALGEBRAIC NOTATION: MORE ABOUT PENDING OPERATIONS

Page 34

Finally, let me show you a little more practical example.

Example: 25 + @ q =

This may not appear to illustrate the same point; it really does, as well as a
second point. The answer obtained is 25 + 5 = 30. What occurred is this: after the
25 +, addition was pending, with 25 stored in the processing registers.
Furthermore, 25 was in the display-register. Keying in 5 at this point would have
had the same effect as what occurred as a result of @ q: Namely @ q replaced the
25 in the display-register with its square root just as though that number had
been keyed in. With the addition still pending = completed the calculation. This
example and the ones preceding fall into the "peculiar-sequence" category.
However, you will note that in the last example 25 + the square root of 25 was
computed without entering 25 more than once, so there was some economy realized.
You must be careful though, because if you press 25 + =, you do not get 25 + 25 =
50, but get an error indication ── you have not supplied a second operand. In the
previous example, though, the square-root function supplies the operand as though
it had been keyed in.

ADDRESSABLE MEMORY REGISTERS

 Page 35

ASTROCAL has 100 addressable memory registers for holding data. The addressable
memory registers are designated in text by a notation as AM23. The contents of
addressable memory registers are designated in text by a notation as M43.

It is usually arbitrary what addressable memory register you use for storing
various data as long as you keep them straight. You should exercise discretion in
using register AM00 because ASTROCAL uses this register during polar/rectangular
conversions and Dec JPNZ execution (this will be discussed in detail later). I
therefore advise you to form the habit of not using AM00 for routine data storage.

STORING DATA INTO ADDRESSABLE MEMORY

Consider evaluating an expression such as 25X4-12X3+3X+7 for a value of X to be
keyed in: X = 45.714, for example. Obviously, you don't want to key in this value
more than once. To avoid this, simply store the value into addressable memory the
first time it is keyed in and recall it from addressable memory whenever it is
needed in the course of evaluating expressions. The following example shows
another effective use of addressable memory.

Example:
 sin[(3X2+6X-12)/(X3+23)]+cos[(3X2+6X-12)/(X3+23)]
 J = ──
 sin[(3X2+6X-12)/(X3+23)]-cos[(3X2+6X-12)/(X3+23)]

In addition to storing X for the evaluation of the expression (3X2+6X-12)/(X3+23),
the value of this expression should be stored because it is the argument of both
the sine and cosine functions. I will return to these examples soon. For now, they
are presented to show typical situations for use of addressable memory.

To store the value contained in the display-register into a given addressable
memory register, you just key k followed by the two-digit number of the
addressable memory register.

Example: Store 45.714 into addressable memory register 37.

ENTER PRESS DISPLAY
45.714 k37 45.714

Example: Calculate π2/6 and store the results in AM75.

ENTER PRESS DISPLAY
 p q / 9.869604401
6 = k75 1.644934067

ADDRESSABLE MEMORY REGISTERS

Page 36

RECALLING DATA FROM ADDRESSABLE MEMORY

At any point in a calculation, a value stored in addressable memory can be
introduced into the display-register as if it had been keyed in at that point. The
keystrokes required to accomplish this are press m followed by the two-digit
number of the addressable memory register that the value is stored in.

Example: D x HT = ?

Where D is the value stored in AM23,
 H is the value stored in AM34,
 T is the value stored in AM28.

Press: m23 * m34 → m28 =

Now I can combine the store and recall capabilities and work out the examples
mentioned before.

Example: Compute 25X4-12X3+3X+7

Where X = 45.714

ENTER PRESS DISPLAY REMARKS
45.714 k01 45.714 X into AM01
 → 45.714
4 * 4367137.8 X4
25 - 109178445. 25X4
12 * m01 45.714
 → 45.714
3 + 108032054.2 25X4-12X3
3 * m01 45.714
 + 108032201.3 25X4-12X3+3X
7 = 108032208.3 Answer

Example: Compute the following with X = π/6 radians.

 sin[(3X2+6X-12)/(X3+23)]+cos[(3X2+6X-12)/(X3+23)]
 J = ───
 sin[(3X2+6X-12)/(X3+23)]-cos[(3X2+6X-12)/(X3+23)]

ADDRESSABLE MEMORY REGISTERS

 Page 37

ANGLE:Radians
ENTER PRESS DISPLAY REMARKS
 p / 3.141592654
6 = (k01 .5235987756 X into AM01
 q * .2741556778 X2
3 + .8224670334 3X2
6 * m01 - 3.964059687 3X2 + 6X
12) / (-8.035940313 3X2 + 6X - 12
 m01 .5235987756
 y + .1435475772 X3
23) 23.14354758 X3+23
 = -0.34722163 Q=(3X2+6X-12)/(X3+23)
 k02 -0.34722163 Q into AM02
 s -.3402865623 sin Q
 k03 -.3402865623 sin Q into AM03
 + m02 -0.34722163
 c .9403217829 cos Q
 k04 .9403217829 cos Q into AM04
 = .6000352206 sin Q + cos Q
 / (.6000352206
 m03 -.3402865623
 - m04 .9403217829
) -1.280608345 sin Q - cos Q
 = -.4685548262 Answer

The above example would have appeared complicated if the arguments had to be
entered each time they occurred. Addressable memory was used to hold X in AM01, Q
in AM02, sin Q in AM03, and cos Q in AM04. The use of addressable memory has saved
keystrokes (and time ── transcendental calculations for ASTROCAL[1] range from
four to greater than twenty seconds) in the evaluation process.

CLEARING THE ADDRESSABLE MEMORY REGISTERS

When ASTROCAL is initialized, all addressable memory registers contain the number
zero. As you proceed to use addressable memory, some of these registers acquire
non-zero contents. It is frequently desirable to zero all of the addressable
memory registers without re-initializing ASTROCAL (re-initializing would also
abort internal processing and blank program memory). This addressable memory
register clearing could be accomplished by storing zero in each one of the one
hundred registers; however, it is far more convenient to use the Clear Memory
instruction. To clear all one hundred addressable memory registers at any time
without affecting the internal processing registers, display, or program memory,
simply press SHIFT·CLEAR.

ADDRESSABLE MEMORY REGISTERS

Page 38

DIRECT ADDRESSABLE MEMORY ARITHMETIC

You can store a number any time without affecting the display, the contents of the
internal processing registers, or any pending operations. You can also perform
arithmetic operations on the contents of addressable memory without affecting the
calculation in progress. You can add the display, Q, to the contents of any
addressable memory register; you can subtract Q from any addressable memory
register contents; you can multiply by Q; and you can divide the contents of any
addressable memory register by Q. Of course, until you recall the resultant
quantity, you cannot see that any operation has taken place.

Again denoting the display-register contents by Q, and now the addressable memory
register number by nn, the direct addressable memory register arithmetic is
performed as follows:

• To ADD Q to the contents of Amnn, press u nn.
• To SUBTRACT Q from the contents of Amnn, press @ u nn.
• To MULTIPLY the contents of AMnn by Q, press v nn.
• To DIVIDE the contents of AMnn by Q, press @ v nn.

Example: Calculate 12 x 6, 17 x 3.2, and 11.8 x 4; accumulate the sum of these
three products into AM56.

ENTER PRESS DISPLAY REMARKS
 CLEAR 0
 SHIFT·CLEAR 0. All addressable memory is set to

zero.
12 * 12.
6 = 72. 12 x 6
 u56 72. Sum 72 into AM56
17 * 17.
3.2 = 54.4 17 x 3.2
 u56 54.4 Sum 54.4 into AM56
11.8 * 11.8
4 = 47.2 11.8 x 4
 u56 47.2 Sum 47.2 into AM56
 m56 173.6 Final sum

Example: Compute loge2 and store into AM87, then compute loge3, store in AM88 and
multiply the contents of AM87 by this quantity, leaving the results in AM87.

ENTER PRESS DISPLAY
2 n .6931471806
 k87
3 n 1.098612289
 k88 1.098612289
 v87 1.098612289
 m87 .7615000104

ADDRESSABLE MEMORY REGISTERS

 Page 39

When direct addressable memory register arithmetic results in overflow or
too-small, "ERROR" will flash, indicating the error. The error condition remains
until the contents of that addressable register is changed.

Example:

ENTER PRESS DISPLAY REMARKS
1 e 1 0000
9999 k01 1. 9999
 v01 1. 9999 "ERROR" is flashing.
 SPACE 1. 9999 "ERROR" stops flashing.
3 y 2.7 0001 Cube calculation performed

properly.
 m01 9.999999999 9999 "ERROR" flashing again, indicating

the error condition is still
present.

ADDRESSABLE MEMORY/DISPLAY EXCHANGE

An additional memory instruction is available that combines the effects of a store
and a recall instruction in a single step. This is the exchange instruction.

The effect of an exchange is to swap the contents of the display-register with the
contents of the addressable memory register named in the command. The proper
command sequence for an exchange is g followed by the two-digit addressable memory
register number.

Example:

ENTER PRESS DISPLAY REMARKS
23 k04 23. 23 in AM04
51 * 51.
6 - 306. 51 x 6
 g04 23. 306 in AM04
 = 283.
 m04 306.

The effect of the exchange function in this example was to store 306 into AM04
while recalling the earlier content of AM04, namely 23. The pending substraction
was unaffected by the exchange.

This instruction can be used for several purposes. One is to store a quantity that
will be needed later while also recalling a quantity previously stored. Using
exchange to accomplish this is efficient from an instruction (keystroke) point of
view, and also from an addressable memory usage point of view. One addressable
memory register serves for two data, storing the second data value concurrently
while recalling the first.

ADDRESSABLE MEMORY REGISTERS

Page 40

SUPPLYING MISSING OPERANDS WITH MEMORY FUNCTIONS

There is one effect of all memory functions that has not been mentioned. After
these functions have taken place, it is just as though the quantity in the
display-register has been keyed in. You may recall from the earlier discussion
that single-variable functions behave the same way. Allowing us to key in 25 + @ q
= and obtain 30, whereas 25 + = gives us an error indication (lacking a second
operand) rather than 50 as one might guess. The square-root function replaced 25
in the display-register with 5, exactly as though 5 had been keyed in, and thereby
providing the second operand to go with 25 +.

The memory functions behave in the same way. As a matter of fact, it is not even
necessary to perform a store, recall, sum, product, or exchange to accomplish this
effect. The single keys k, m, u, v, and g serve the same purpose even when not
followed by a two-digit number. Although this falls into the category of a
peculiar key sequence, a very useful construction is the following:

 [...Sub-Expression...] (k OP ... etc,

where OP denotes any operation. If the sub-expression in brackets is needed again
as the first operand in the parenthetical expression, then, rather than storing it
and immediately recalling it from addressable memory, the k alone can accomplish
the same purpose. To demonstrate this let's return to 25 + =.

ENTER PRESS DISPLAY REMARKS
25 + 25. Addition pending
 k 25. Does not store, and has the effect

of reentering contents of display.
 = 50. 25 + 25

Example: Evaluate 8.235625848.23562584

ENTER PRESS DISPLAY
8.23562584 → 8.23562584
 k 8.23562584
 = 34780405.65

Example: (25.3 + 54.2) (25.3 + 54.2)
 ───────────── x log10 ─────────────
 (4.7 - 3.9) (4.9 - 3.9)

ENTER PRESS DISPLAY REMARKS
25.3 + 25.3
54.2 = / (79.5 25.3 + 54.2
4.7 - 4.7
3.9 = * 99.375 (25.3+54.2)/(4.7-3.9)
 l 1.997277142
 = 198.479416

EXECUTING PROGRAMS STORED ON DISK

 Page 41

The most effective use of ASTROCAL is realized when you EXECUTE a stored program.
The instructions for using each program are unique for that particular program.
For programs that you write, I strongly recommend that you include the detailed
operating instructions in remarks. This should be considered an essential part of
the programming task; otherwise, you will be surprised how easy it is to forget
how to use even a well designed program. The next sections deal more with
programming ASTROCAL, both the mechanics and questions of technique and style.
There are two basic steps necessary to execute programs stored on a disk: loading
the program from disk and beginning execution.

FILE NAMES

Any program that has been saved on disk is a file. You must assign each file a
unique name to the logical disk drive or diskette it occupies. When you save a
file to a logical disk drive or diskette, the file name and where the file is
located are saved in that disk's directory. If you were to use a file name that
you had already used on a particular logical drive or diskette, the more recent
file would be written over the existing file. File names, however, are unique only
to a logical disk drive or an individual diskette.

A proper file name may be no longer than eight characters in length, the first of
which must be a letter. The rest of the file name may include numbers. Thus,
RATETWO and RATE2 are both proper and unique file names. File names cannot include
punctuation, spaces, or special characters. All letter characters in a file name
are interpreted as upper case.

File Name Extensions

In addition to the file name, ASTROCAL also recognizes extensions. ASTROCAL adds
the default extension /CAL to any file name entered. If a drive number is part of
the filespec, then ASTROCAL will insert /CAL between the file name and the drive
number. Thus RATE:1 and RATE/CAL:1 are equivalent.

You can override the default extension by creating your own, such as /AC1 or /QWE.
ASTROCAL adds the /CAL extension if you do not include one in the "Filespec:"
prompt. However, if you do not want an extension, then only include the slash in
the filespec. e.g., RATE/ to load the file RATE.

EXECUTING PROGRAMS STORED ON DISK

Page 42

FILE SEARCH

ASTROCAL searches the selected logical disk drive or diskette for all files with a
/CAL extension if only :d (d is the logical drive number) is entered for the
"Filespec:". ASTROCAL displays the files one at a time on the "Filespec:" prompt
line. When you see the file name you want to load, merge, or save press <ENTER>.
The → key displays the next /CAL file on the logical disk drive or diskette. If
you inadvertently pass the desired file name, press the ← key to scan in the other
direction. The files are not displayed sorted, and the order that they appear may
change as you add additional files to the logical disk drive or diskette.

LOADING A PROGRAM FROM DISK

The following are the steps required to load a program from disk into program
memory.

 1. Press CTRL·l to receive the "Filespec:" prompt.

 2. Enter the filespec of the stored program.

NOTE: You can load, merge, or save a program in the program mode or the calculate
mode.

If there are no error messages, the program is now loaded into program memory and
remains there until you exit ASTROCAL, load or merge another program, or key in
new instructions.

When you load a program from disk, all 10,000 locations of program memory are
blanked before the new program is loaded. If you want to retain all or part of the
current program in program memory, please refer to the merge command that follows.

EXECUTING PROGRAMS STORED ON DISK

 Page 43

MERGING A LOAD MODULE FROM DISK

The purpose of the merge command is to enable you to create code segments to
perform some specific function that is needed in several programs. Instead of
continually keying the same instructions for each program that needs a particular
set of instructions performed, key the instructions once and save this code
segment on disk for future needs.

The following are the steps required to merge a program from disk to another
program in program memory.

 1. Press CTRL·p to transfer to the program mode.

 2. Press CTRL·/, then the four-digit location you want the merged code segment to

start.

 3. Press CTRL·m to receive the "Filespec:" prompt.

 4. Enter the filespec of the stored program.

If there are no error messages, then the program is now merged with the current
program in program memory and remains there until you exit ASTROCAL, load or merge
another program, or key in new instructions.

 5. Press CTRL·p again to transfer back to the calculate mode, or repeat steps 2

through 4 to merge another program segment.

Of considerable significance is the fact that loading or merging a program into
program memory does not affect the addressable memory registers, program flags, or
display format. In addition, a program can be loaded or merged without affecting
internal processing registers or the displayed number. This means that if you find
you cannot fit an entire program into 10,000 instructions, then partition the
total program into segments or load modules that do fit into program memory
separately. The program is then executed by sequentially loading and executing the
load modules.

Obviously, the merge command could overlay part of or the entire current program
in program memory. Because the merge command does not blank program memory, any
prior instructions in program memory that are not overlaid are still present. This
may be the intended purpose, or perhaps you do not care that there may be
extraneous instructions in program memory. However, whenever a save to disk is
executed, ASTROCAL will save every instruction in program memory, adjusting the
length of the save as required to include the last instruction in program memory.

EXECUTING PROGRAMS STORED ON DISK

Page 44

SAVING A PROGRAM TO DISK

You can save any program in program memory to disk. But, if you exit ASTROCAL, the
data in program memory may be lost.

The procedure for saving a program to disk is similar to loading a program from
disk.

 1. Press CTRL·s to receive the "Filespec:" prompt.

 2. Enter the name you want this version of the program saved as.

Saving a program does not affect the addressable memory registers, program flags,
or the display format; however, the program counter is set to 0000.

NOTE: You can load, merge, or save a program in the program mode or the calculate
mode.

EXECUTING A PROGRAM

Execution of a well designed program is started by pressing one of the 26 user
defined label keys: upper case A through Z. For the Model 4, upper case A through
F can be simulated with F1, F2, F3, RIGHT·SHIFT·F1, RIGHT·SHIFT·F2, and
RIGHT·SHIFT·F3, respectively. These 26 keys are special in that pressing one
causes ASTROCAL to position the program counter to the point in program memory so
labeled and to transfer into the execute mode as soon as the program counter is
positioned.

Another method to start program execution is to position the program counter to
the desired starting point while ASTROCAL is in the calculate mode, perhaps enter
data with the keyboard, and finally enter the execute mode by pressing
SHIFT·ENTER. Positioning the program counter can be accomplished with the go-to
instruction that will be discussed in the TRANSFER INSTRUCTIONS section. More
likely, if the program counter needs positioning it is to the start of the program
memory; and you can accomplish this by the reset instruction. The reset
instruction is entered from the keyboard by pressing comma. The reset instruction
may not be appropriate as it also clears program flags and subroutine
return-pointer registers.

GENERAL PROGRAMMING INSTRUCTIONS

 Page 45

From what you have learned in the preceding sections, you are already basically
prepared to write useful programs for ASTROCAL. This comes from the fact that each
keystroke in the calculate mode can be stored in a program location in the program
mode (where it is called an instruction). And when this instruction is executed in
the execute mode it has the same effect as would have been obtained by that
keystroke in the calculate mode.

There are still a few ingredients missing, however, if you are to make the best
use of ASTROCAL. The first group of ingredients is essential: a handful of
controls enabling you to specify when the program should halt for data entry or
for you to look at the answer, the label statements that enable you to
conveniently start execution at different points in the program and that sort of
thing.

The second group of ingredients includes those instructions that substitute for
your eyes and your judgement during program execution. These instructions are
those that determine what shall be done next, based on the conditions that have
been obtained so far. You cannot directly engage in this process in the execute
mode; because everything happens too fast, and the display is blanked. Thus you
must make the basis of any decisions known to ASTROCAL. For example, in a
trial-and-error solution to a problem, you would stop when the answer has been
bracketed to within the tolerance you desired. ASTROCAL has several instructions
that, when used in combination with others, can perform this type of decision
making.

The third set of programming ingredients completes your full capabilities as an
ASTROCAL user: They relate to a very orderly method of problem solving that
ASTROCAL provides. This method consists of defining the answer to a problem from
the top down: you write the answer in terms of other quantities. Rather than
defining and evaluating those quantities on the spot, you just give them a name
(that is a label) and go on with the main problem definition. When you are ready
to define those quantities that have only been named until now, you do so
immediately following the appropriate label.

The actual ASTROCAL evaluation of the problem solution in the execute mode invokes
all those detailed definitions that have been delayed until you completed the
statement of the whole problem at a higher level. It invokes those definitions
simply upon recognizing the names (or labels) assigned, and inserts the labeled
definitions and evaluations of the deferred quantities. This method of top down
problem solution is made possible by the subroutine capability. ASTROCAL provides
for automatic performance of program execution at 73 levels. This means that not
only can you give a deferred quantity a name in the main problem definition, you
can also (in defining those deferred quantities) give names to quantities whose
definitions are to be deferred even further, and this process of deferring
quantities can be deferred 71 additional levels!

The addition of these three ingredients to your programming skills is the primary
function of the remaining sections of this manual.

GENERAL PROGRAMMING INSTRUCTIONS

Page 46

ELEMENTS OF PROGRAM EXECUTION

There are 10,000 locations in program memory, numbered from 0000 to 9999. Each
location can hold one keystroke.

When ASTROCAL is in the execute mode, the sequencing of the program steps is
accomplished by means of the program counter (PC). This may be thought of as a
marker that moves through the program memory indicating the next instruction to be
executed. The normal operating sequence in the execute mode is straightforward.

 instruction fetched; PC advanced one location; instruction executed;
 instruction fetched; PC advanced one location; instruction executed;
 instruction fetched; PC advanced one location; instruction executed;
 instruction fetched; PC advanced one location; instruction executed;
 ···
 ···
 ···
 etc.

In this normal sequence, ASTROCAL steps through program memory, executing the
instructions in exactly the order they exist. If ASTROCAL attempts to go past
location 9999 it will flash "ERROR" and return to the calculate mode.

Certain types of instructions alter this simple top-to-bottom execution of the
program. These are the transfer instructions. Detailed discussions of these are
deferred until a later section; but this is an appropriate point to explain how
these instructions alter the normal sequence.

There are two types of transfer instructions, unconditional transfers and
conditional transfers. The names themselves convey the difference between these
two types. When an unconditional transfer instruction is executed, it will
unconditionally reposition the program counter to the location specified in the
transfer instruction. The destination, therefore, becomes the next instruction
fetched. The program counter executes this instruction and is then advanced a step
at a time until another transfer instruction is executed.

The conditional transfer instruction is similar to an unconditional transfer
except for one thing: a conditional transfer instruction first performs some test
(for example, is the display-register positive or is a flag set?); the transfer
occurs only if the test is affirmative. Otherwise, the program counter fetches the
instruction at the program location.

GENERAL PROGRAMMING INSTRUCTIONS

 Page 47

The time history of a typical program using transfer instructions might be as
follows.

 Fetch instruction; Fetch instruction;
 advance counter; advance counter;
 execute instruction. execute instruction.
 Fetch instruction; Fetch instruction;
 advance counter; advance counter;
 execute instruction. execute instruction.
 Fetch instruction; Fetch instruction;
 advance counter; advance counter;
 execute instruction. [3] Perform test (affirmative result);
 Fetch instruction; Reposition counter.
 advance counter; [4] Fetch instruction;
 execute instruction. advance counter;
 Fetch instruction; execute instruction.
 advance counter; Fetch instruction;
 execute instruction. advance counter;
 Fetch instruction; execute instruction.
 advance counter; Fetch instruction;
 execute instruction. advance counter;
 Fetch instruction; execute instruction.
 advance counter; Fetch instruction;
 execute instruction. advance counter;
 Fetch instruction; execute instruction.
 advance counter; Fetch instruction;
[1] Reposition counter. advance counter;
[2] Fetch instruction; [5] Perform test (negative result);
 advance counter; Fetch instruction;
 execute instruction. advance counter;
 Fetch instruction; execute instruction.
 advance counter; Fetch instruction;
 execute instruction. advance counter;
 Fetch instruction; execute instruction.
 advance counter; Fetch instruction;
 execute instruction. advance counter;
 Fetch instruction; execute instruction.
 advance counter; Fetch instruction;
 execute instruction. etc.

In this illustrative sequence, an unconditional transfer occurred at point [1],
transferring to the location of the next instruction fetched at point [2]. At
point [3] a conditional transfer instruction was executed with an affirmative
result. This caused transfer to the location of the next instruction fetched at
point [4]. At point [5] of the process a conditional transfer instruction was
executed with a negative result and the program counter fetched the instruction at
the program location.

GENERAL PROGRAMMING INSTRUCTIONS

Page 48

MECHANICS OF PROGRAMMING

What are the steps involved in creating a program for ASTROCAL? From beginning to
end they are essentially the following:

 1. Gather equations that pertain to the problem.

 2. Define numerical approach (algorithms) for solving equations.

 3. Determine how you would like the program to be used (input data, quantities

computed, instructions, label assignments, etc.).

 4. Conceptualize flow of program. If it is complicated (many transfers) then

flow-charting is recommended. Even better, try to simplify program structure
after it is flow-charted.

 5. Begin making addressable memory register assignments. This task continues

through the programming process. (Do not store a quantity in addressable
memory without making a written note that the register in question contains
that quantity. And, I recommend adding remarks at the end of the program for
all addressable memory usage.)

 6. Actual coding: Write down each instruction with a method for easily

identifying the insertion of additional instructions.

 7. Make corrections to code, addressable memory assignments, or even procedure

for program use if necessary.

 8. Transfer ASTROCAL into the program mode.

 9. Key in program (including remarks in appropriate places).

10. Save the program on disk, if desired.

11. Transfer ASTROCAL into the calculate mode.

12. Check out program on test problems.

13. Make necessary corrections.

14. Document complete program thoroughly.

If these steps are performed deliberately, you are more likely to be satisfied
with the result. For example, if you do not spend some time defining how you would
like the program to operate (the third step in the foregoing list), then the user
features of the resulting program may leave you less than satisfied. Preliminary
efforts are well spent; because, after you have designed and documented the
program you can use it conveniently at any time. Another way of stating this
advice: The programming language of ASTROCAL is so easy to use that the coding
phase of programming is simple. Free from this concern, you can spend most of your
effort in the definition of the problem and in enforcing the requirements so that
the resulting program meets your problem solving needs.

ELEMENTARY PROGRAMMING

 Page 49

USING LABELS

When you execute a program, it is necessary to properly position the program
counter and switch to the execute mode. Positioning the program counter can be
accomplished with the help of labels. Automatic switching to the execute mode can
also be accomplished by using the special labels A through Z. These special upper
case letter keys are also known as the user-defined keys, because the effect of
pressing one is to execute the program defined and labeled. I will discuss these
special labels first and then discuss the other types of labels.

Using the concept of program counter developed in the last section, the effect of
pressing one of the user-defined keys in the calculate mode is as follows:

 1. Positions the program counter to the first location after the corresponding

label in program memory.

 2. Switches ASTROCAL into the execute mode.

This means if you wish to begin execution at a given location in program memory,
the simplest technique is to provide a label in the program code just prior to
that desired location. This label is placed in program memory by the instruction
SHIFT·@, followed by the label.

Example: Suppose you would like the following process to take place simply by
pressing the W key in the calculate mode:

 Store the quantity in the display register into AM01 and multiply this quantity

by the sine of the value in AM23.

To do this, code the following sequence into program memory:

 LABEL
 W
 STO MEM
 0
 1
 x
 RCL MEM
 2
 3
 Sine
 =

ELEMENTARY PROGRAMMING

Page 50

Wherever that sequence occurs in program memory, pressing W in the calculate mode
will find it and cause execution to take place starting at the first instruction
after W.

Labels of any type may be placed anywhere in a program instruction sequence
without altering the meaning of that sequence. They are simply ignored during
instruction processing except for the purpose of locating a desired point in
program memory and do not affect pending operations. This statement is not
intended to mean that a label in a program can interrupt a sequence such as k01,
where several program locations are involved in defining a single processing
action.

You do not key in labels after the rest of the code is written. You conceive the
need for and define your labels as part of the program design process. They are
keyed into program memory along with the rest of your code, just as though they
were other instruction steps.

Any key except the digits 0 through 9 may be used as a label.

I have explained how to use the user-defined keys as labels. The other labels are
not used in an identical way. For example, just pressing @ in the calculate mode
would not cause the calculator to search for a location so labeled and begin
execution there, even if there were a LABEL Inverse sequence in the program. I
will discuss how to use such labels in the next section. However, you should know
that the placement of those labels in the code sequence is identical to what has
already been described: To establish a location labeled Inverse in the program
memory, just key in the instructions LABEL Inverse (<SHIFT>@ @) in the location
immediately preceding the one to acquire that name. If you have more than one
location with the same label, only the first one (the one with the lower program
location) will be found.

USING EXECUTE AND HALT

You have learned how to start program execution, but not how to stop it for keying
in data or for looking at results. Halting a program at specified points is
accomplished by the halt instruction "HALT", the BREAK key. Upon execution of a
halt instruction encountered in the program, the program counter indicates the
first location after the halt and program execution stops; there is an immediate
transition to the calculate mode, and hence calculator control is returned to the
keyboard. By pressing SHIFT·ENTER, Execute, the execute mode is restored and
execution is resumed from the point indicated by the program counter.

Thus sequences of halt instructions (in the program) and Execute commands (from
the keyboard) enable control to be passed back and forth between the program and
the keyboard.

ELEMENTARY PROGRAMMING

 Page 51

Pressing the BREAK from the keyboard when ASTROCAL is in the execute mode stops
program execution and returns control to the keyboard. The program counter is
remains wherever it happened to be at the time of program interruption (you cannot
interrupt a program between a memory operation). Program execution is resumed at
that location when SHIFT·ENTER is pressed. The following example shows how you
might use what you've just learned to calculate the volume of a right circular
cylinder.

Example: Calculate the volume of a right circular cylinder of radius r, and height
h; V = πr2h. Program operation desired: Key in r, press A, then key in h, press
SHIFT·ENTER and see the answer.

KEY SEQUENCE INSTRUCTION REMARKS
SHIFT·@ LABEL Labels start of program
A A to calculate volume
q Square r was entered before A is pressed
: x
p pi
: x πr2 in display-register
BREAK HALT enable h to be entered
ENTER = V = πr2h
BREAK HALT Answer

ENTERING A PROGRAM

The sequence for keying a program into program memory is as follows:

 1. With ASTROCAL in the calculate mode press CTRL·p, placing ASTROCAL in the

program mode.

 2. Then press SHIFT·↑ to position the program counter to 0000, the top of program

memory.

 3. Press CTRL·t to erase any program currently in program memory. You will see

four rows of seven digits (one group of four and one group of three) below the
display. The four digits, under "Location", to the right of a ">" is the
location of the program counter.

 4. Key in the program completely. As you key in an instruction, the instruction

appears under "Instruction", and the program counter advances one location.
The program format enables you to see the previous three instructions keyed
in. If you press a wrong key, use ↑ to reposition the program counter to the
previous location and over key the incorrect instruction.

 5. Return to the calculate mode by pressing CTRL·p.

 6. Execute a test problem and correct (edit) the program as required.

 7. The program can now be saved on a disk.

ELEMENTARY PROGRAMMING

Page 52

EDITING PROGRAMS

When keying in a program, you have the following capabilities:

 1. Display the current location and instruction with up to three preceding and

three following instructions;
 2. Replace the current instruction;
 3. Delete current instruction and move all following instructions up;
4. Insert a remark prior to the current instruction (moves all following

instructions down 40 locations);
 5. Insert a message (up to 79 characters) prior to the current instruction (moves

all following instructions down by the length of the message);
 6. Insert a blank instruction at the current location and move all following

instructions down;
 7. Reposition the program counter up or down by one instruction;
 8. Reposition the program counter to any location;
 9. Delete all instructions from the current location;
10. Print all instructions from the current location;
11. Print all instructions from location 0000 to the last instruction;
12. Find the next blank instruction;
13. Find the last instruction;
14. Find the next occurrence of an instruction.

These capabilities enable you to modify a program easily without reentering
instructions that require no change.

Displaying the Program

In the program mode, there is additional information displayed below the display:
"Location Code Instruction". This information, program code, is designed to show
you where the program counter is located and the current instruction. The first
four digits are the location, the second three digits are the key code of the
instruction that is displayed under "Instruction". The current location, code, and
instruction are preceded with a > symbol.

Replacing an instruction

In accordance with the foregoing discussion, the current instruction is indicated
with a > symbol (the location of the program counter). To substitute another
instruction into that location (except for remarks), simply key in the new
instruction and it will replace the old one in that location. Remarks can be
deleted (see below) or edited with CTRL·e.

Deleting an instruction

Pressing CTRL·d deletes the current instruction and moves all instructions with a
higher location up to close the space. As a consequence of the closing-up
operation in instruction deletion, the last location in program memory (9999) is
blanked.

Inserting Remarks

Pressing CTRL·r enables you to insert program remarks. All remarks in ASTROCAL use
40 locations with a text size of 38 characters (if you key in 20 characters,
ASTROCAL pads the right with 18 spaces, and remarks cannot be entered above
location 9959). Inserting a remark pushes down the current (and all instructions
with a higher location) 40 locations. CTRL·i (see below) is not required.

ELEMENTARY PROGRAMMING

 Page 53

Inserting Messages

Pressing CTRL·c enables you to insert messages conveniently. Messages may be
entered one character at a time by pressing LEFT-SHIFT·F3. Inserting a message
pushes down the current instruction (and all instructions with a higher location)
the length of the message. CTRL·i (see below) is not required.

Inserting an instruction

Sometimes you may wish to insert an instruction at the current location without
destroying the one already there. This involves a two step process:

 Step 1. Press CTRL·i to push down the current instruction (and all

instructions with a higher location) one location, leaving a blank
instruction in its place.

 Step 2. Key in the desired instruction in place of the blank instruction.

As you insert instructions, the instruction in the last location (9999) is pushed
out of program memory and lost.

Single-Step and Back-step

You will frequently wish to examine portions of the program as stored in program
memory. There are several editing commands that enable you to accomplish this. To
single-step, press ↓ or CTRL·z in the program mode and the location of the program
counter is incremented by one. To back-step, press ↑ or CTRL·q and the location of
the program counter is decremented by one. Both the single-step and back-step
commands do not affect the contents of the program in program memory in any way.

Other program counter relocation commands

Pressing SHIFT·↑, SHIFT·←, or CTRL·, repositions the program counter to location
0000. Pressing SHIFT·↓, SHIFT·→, or CTRL·- repositions the program counter to
location 9999. Pressing CTRL·/ followed by four digits repositions the program
counter to the location specified by the four digits. This command enables you to
directly reposition the program counter to any location in program memory. In the
calculate mode, you can press ? followed by a label or four digits to position the
program counter to a location, before you transfer to the program mode. In the
program mode you cannot use labels for positioning the program counter.

Erasing several instructions

When you have a program in program memory, and you wish to input another program,
you can simply key in the new program by over keying the instructions there.
However, you may wish to completely erase the current program and start with all
blank program memory. Without re-initializing ASTROCAL to accomplish this, press
CTRL·t to blank all instruction from the current location to the end of program
memory.

PROGRAM KEYS, CODES, and INSTRUCTIONS

On the following pages are the program keys, the ASTROCAL key code value, the
instruction that is displayed and the function of the instruction.

ELEMENTARY PROGRAMMING

Page 54

KEY CODE INSTRUCTION FUNCTION

SHIFT·0 or 000 No operation (Blank instruction)
SHIFT·SPACE
BREAK 002 HALT Stop execution (return to calculate mode)
CTRL·h 008 $ hold $ Suspend execution
CTRL·x 024 break pt Stop execution enter single-step mode
SHIFT·ENTER 027 Execute Execute from current instruction
 ! 033 ! Factorial
 " 034 Set flag Set user flag (I)
 # 035 If flag Test user flag (I)
 $ 036 If error Test error condition (I)
 % 037 If pos Test sign (I)
 & 038 If zero Test value (I)
 ' 039 Dec JPNZ Conditional loop (I)
 (040 (Open parenthesis
) 041) Close parenthesis
 * 042 x Multiply
 + 043 + Add
 , 044 Reset Resets flags, return pointers, & program counter
 - 045 - Subtract
 . 046 . Decimal
 / 047 / Divide
 0 048 0 Digit zero
 1 049 1 Digit one
 2 050 2 Digit two
 3 051 3 Digit three
 4 052 4 Digit four
 5 053 5 Digit five
 6 054 6 Digit six
 7 055 7 Digit seven
 8 056 8 Digit eight
 9 057 9 Digit nine
 : 058 x Multiply (functions as * with different code)
 ; 059 + Add (functions as + with different code)
 < 060 Return Return from subroutine
ENTER or = 061 = Equal
 > 062 Gosub Perform subroutine
 ? 063 Goto Unconditional transfer
 @ 064 Inverse Inverses appropriate functions
 [functions suffixed with (I)]
SHIFT·A 065 A User-defined key, also F1 on MAX-80 and Model 4
SHIFT·B 066 B User-defined key, also F2 on MAX-80 and Model 4
SHIFT·C 067 C User-defined key, also F3 on MAX-80 and Model 4
SHIFT·D 068 D User-defined key, also F4 (RIGHT·SHIFT·F1) Mod 4
SHIFT·E 069 E User-defined key, also F5 (RIGHT·SHIFT·F2) Mod 4
SHIFT·F 070 F User-defined key, also F6 (RIGHT·SHIFT·F3) Mod 4
SHIFT·G 071 G User-defined key
SHIFT·H 072 H User-defined key
SHIFT·I 073 I User-defined key
SHIFT·J 074 J User-defined key

ELEMENTARY PROGRAMMING

 Page 55

KEY CODE INSTRUCTION FUNCTION

SHIFT·K 075 K User-defined key
SHIFT·L 076 L User-defined key
SHIFT·M 077 M User-defined key
SHIFT·N 078 N User-defined key
SHIFT·O 079 O User-defined key
SHIFT·P 080 P User-defined key
SHIFT·Q 081 Q User-defined key
SHIFT·R 082 R User-defined key
SHIFT·S 083 S User-defined key
SHIFT·T 084 T User-defined key
SHIFT·U 085 U User-defined key
SHIFT·V 086 V User-defined key
SHIFT·W 087 W User-defined key
SHIFT·X 088 X User-defined key
SHIFT·Y 089 Y User-defined key
SHIFT·Z 090 Z User-defined key
 → 091 Exponent Raise to
 ← 092 Root Root by
SHIFT·CLEAR 093 CLR MEM Clear all memory
CLEAR 094 CLEAR Clear calculator
SPACE 095 CLR ERR Clear error condition/digit
SHIFT·@ 096 LABEL Label preface
 a 097 paper Line feed paper
 b 098 D.MS/D.d Degrees.MinutesSeconds to Degrees.decimal (I)
 c 099 Cosine Cosine of display (I)
 d 100 Deg/Rad Degrees to radians (I)
 e 101 EE Scientific notation exponent (I)
 f 102 Fix Dec. Fix decimal digits (I)
 g 103 EXC MEM Exchange display with memory
 h 104 Hyperbol Hyperbolic function
 i 105 Indirect Indirect memory addressing
 j 106 Pol/Rect Polar to rectangular coordinates (I)
 k 107 STO MEM Store display into memory
 l 108 LOG 10 Common logarithm of display (I)
 m 109 RCL MEM Recall memory
 n 110 LOG e Natural logarithm of display (I)
 o 111 +/- Change sign
 p 112 pi π (3.141592653589793238462643383···)
 q 113 Square Square display (I)
 r 114 1/x Reciprocal display
 s 115 Sine Sine of display (I)
 t 116 Tangent Tangent of display (I)
 u 117 SUM MEM Add display to memory (I)
 v 118 PROD MEM Multiply memory by display (I)
 w 119 print Print display
 x 120 trace Execute program in trace mode
 y 121 Cube Cube display (I)
 z 122 Sw mode Angular mode ── degree or radians

ELEMENTARY PROGRAMMING

Page 56

Message Characters

KEY CODE INSTRUCTION FUNCTION

ALTCTRL·↑ 145 Carr Rtn Positions cursor to starting position
 Codes 129 through 149 have equivalent function.
ALTCTRL·↓ 154 New Line Positions cursor to starting position and erases

line
 Codes 150 through 157 have equivalent function.
ALTCTRL·! 161 |!| Display ! at cursor position
ALTCTRL·" 162 |"| Display " at cursor position
ALTCTRL·# 163 |#| Display # at cursor position
ALTCTRL·$ 164 |$| Display $ at cursor position
 ...
ALTCTRL·A 193 |A| Display A at cursor position
ALTCTRL·B 194 |B| Display B at cursor position
ALTCTRL·C 195 |C| Display C at cursor position
ALTCTRL·D 196 |D| Display D at cursor position
 ...
ALTCTRL·W 215 |W| Display W at cursor position
ALTCTRL·X 216 |X| Display X at cursor position
ALTCTRL·Y 217 |Y| Display Y at cursor position
ALTCTRL·Z 218 |Z| Display Z at cursor position
 ...
ALTCTRL·a 225 |a| Display a at cursor position
ALTCTRL·b 226 |b| Display b at cursor position
ALTCTRL·c 227 |c| Display c at cursor position
ALTCTRL·d 228 |d| Display d at cursor position
 ...
ALTCTRL·w 247 |w| Display w at cursor position
ALTCTRL·x 248 |x| Display x at cursor position
ALTCTRL·y 249 |y| Display y at cursor position
ALTCTRL·z 250 |z| Display z at cursor position

ALTCTRL is the CLEAR key after pressing LEFT-SHIFT·F3. To produce a displayed
space, use ALTCTRL·LEFT-SHIFT·SPACE (ALTCTRL·SPACE produces _). CAPS mode is
ignored using ALTCTRL.

To reset the CLEAR key to the standard ASTROCAL value, press LEFT-SHIFT·F1.

Partial listing of DECTOHEX/CAL's first page (set for two-column listing).

0000 176 |0| 0138 096 LABEL
0001 060 Return 0139 073 I
0002 177 |1| 0140 049 1
0003 060 Return 0141 054 6
0004 178 |2| 0142 091 Exponent
0005 060 Return 0143 109 RCL MEM
0006 179 |3| 0144 048 0
0007 060 Return 0145 055 7
0008 180 |4| 0146 061 =
0009 060 Return 0147 060 Return
0010 181 |5| 0148 000
0011 060 Return Make positive and fix decimals to zero
0012 182 |6| 0189 096 Label

ELEMENTARY PROGRAMMING

 Page 57

PROGRAM EDITING COMMANDS

KEY FUNCTION

CTRL·c Insert message characters (up to 79)

CTRL·d Delete current instruction moving following instructions up and

blanking location 9999.

CTRL·e Edit a remark (similar to editing a DOS command line).

CTRL·f Preface for "FIND".

CTRL·g or GOTO nnnn preface.
CTRL·/

CTRL·i Move all instructions from the current instruction down and insert a

blank instruction into the new current instruction.

CTRL·j Entire program listing in two columns.

CTRL·k Entire program listing in three columns.

CTRL·l Load program starting at 0000.

CTRL·m Load program starting at current instruction.

CTRL·n Form fitted program listing in two columns.

CTRL·o Form fitted program listing in three columns.

CTRL·p Return to calculator mode.

CTRL·q or ↑ Back-step one instruction.

CTRL·r Insert a remark.

CTRL·s Save all instructions in program memory.

CTRL·t Delete from current instruction to end of program memory.

CTRL·u Seek next blank instruction.

CTRL·v Single column listing from current instruction.

CTRL·w Position to first free location in program memory.

CTRL·z or ↓ Step one instruction.

SHIFT·↑ or Set program counter to 0000.
SHIFT·← or
CTRL·,

SHIFT·↓ or Set program counter to 9999.
SHIFT·→ or
CTRL·-

ELEMENTARY PROGRAMMING

Page 58

Listing a Program

To list a program in a single column from the current instruction, press CTRL·v.
The program listing prints all instructions from the current location to the last
instruction in program memory including any intervening blank instructions. To
list the entire program in a single column, position the program counter to
location 0000 by pressing SHIFT·↑, CTRL·,, or SHIFT·← before you press CTRL·v.

Two and three column listings of all instructions in program memory can be
obtained, regardless of the program counter location, by pressing CTRL·j, CTRL·k,
CTRL·n, or CTRL·o.

CTRL·j, two-column, and CTRL·k, three-column, differ from CTRL·n, two-column, and
CTRL·o, three-column, in the way they print the last page of instructions. Both
CTRL·j and CTRL·k prints to the last instruction and balances the columns on the
last page. Whereas CTRL·n and CTRL·o prints as many instructions on the last page
that will fit. This usually results in the last page having many blank
instructions, but keeps all listings in the same format (provided the DOS Library
Command FORMS is the same for each listing).

EXAMPLE: You have 162 instruction in program memory (uses locations 0000 through
0161), and the forms is set for 60 text lines. CTRL·j prints 120 instructions on
the first page and 42 instructions on the second page: 0120 to 0140 in the left
column and 0141 to 0161 in the right column; printing 21 lines on the second page.

CTRL·n for 162 instructions prints 120 instructions on both the first page and the
second page. The second page has instructions 0120 to 0179 in the left column and
instructions 0180 to 0239 in the right column. Instructions 0162 through 0239 are
blank. If the Library Command FORMS is set for the printer, both the CTRL·n and
CTRL·o commands result in the paper at top-of-form after a program listing.

The program listings uses the full width of the FORMS setting. e.g., if the FORMS
is set to a width of 80, then a two-column listings has the first column starting
in position 1 and the second column starting in position 41.

Any of the listing commands can be stopped manually by pressing BREAK.

What prints for a remark depends on the width of the column. If your printer is
set for 80 characters per line, the following is what is printed for single
column, two-column, and three-column listings (ANNUITY/CAL - partial).

Single: 0000 158 Remark: Program is initialized by pressing Z
 0040 158 Remark: To enter Present Value, press V

Two: Program is initialized by pressing Z 0489 052 4
 To enter Present Value, press V 0490 038 If zero

Three: 0000 158 Remark: 0489 052 4 0549 091 Exponent
 0040 158 Remark: 0490 038 If zero 0550 040 (

NOTE: If there is insufficient width, remark text takes precedence over the
location, code, and the instruction "Remark: " (two-column). The three-column
listing has insufficient width to print the entire remark; therefore, only
"Remark: " is printed.

ELEMENTARY PROGRAMMING

 Page 59

Partial listing of DECTOHEX/CAL's last page (set for three-column listing with
printer width set to 118 characters per line).

0604 236 |l| Hexadecimal value into display charset 0842 071 G
0605 225 |a| 0724 096 LABEL 0843 039 Dec JPNZ
0606 242 |r| 0725 122 Sw Mode 0844 099 Cosine
0607 231 |g| 0726 109 RCL MEM 0845 060 Return
0608 229 |e| 0727 048 0 0846 000
0609 161 |!| 0728 052 4 Here if zero is decimal value
0610 160 | | 0729 047 / 0887 096 LABEL
0611 208 |P| 0730 072 H 0888 103 EXC MEM
0612 236 |l| 0731 079 O 0889 105 Indirect
0613 229 |e| 0732 107 STO MEM 0890 063 Goto
0614 225 |a| 0733 048 0 0891 048 0
0615 243 |s| 0734 049 1 0892 051 3
0616 229 |e| 0735 042 x 0893 000
0617 160 | | 0736 072 H 0894 096 LABEL
0618 229 |e| 0737 061 = 0895 081 Q
0619 238 |n| 0738 064 Inverse 0896 160 | |
0620 244 |t| 0739 117 SUM MEM 0897 232 |h|
0621 229 |e| 0740 048 0 0898 229 |e|
0622 242 |r| 0741 052 4 0899 248 |x|
0623 160 | | 0742 071 G 0900 225 |a|
0624 225 |a| 0743 039 Dec JPNZ 0901 228 |d|
0625 160 | | 0744 122 Sw Mode 0902 229 |e|
0626 238 |n| 0745 064 Inverse 0903 227 |c|
0627 245 |u| 0746 102 Fix Dec. 0904 233 |i|
0628 237 |m| 0747 081 Q 0905 237 |m|
0629 226 |b| 0748 174 |.| 0906 225 |a|
0630 229 |e| 0749 109 RCL MEM 0907 236 |l|
0631 242 |r| 0750 048 0 0908 060 Return
0632 160 | | 0751 053 5 0909 000
0633 236 |l| 0752 002 HALT 0910 096 LABEL
0634 229 |e| 0753 000 0911 085 U
0635 243 |s| Decimal value into display charset 0912 160 | |
0636 243 |s| 0794 096 LABEL 0913 228 |d|
0637 160 | | 0795 089 Y 0914 229 |e|
0638 244 |t| 0796 107 STO MEM 0915 227 |c|
0639 232 |h| 0797 048 0 0916 233 |i|
0640 225 |a| 0798 051 3 0917 237 |m|
0641 238 |n| 0799 038 If zero 0918 225 |a|
0642 160 | | 0800 103 EXC MEM 0919 236 |l|
0643 073 I 0801 105 Indirect 0920 160 | |
0644 089 Y 0802 108 LOG 10 0921 060 Return
0645 174 |.| 0803 043 + 0922 000
0646 109 RCL MEM 0804 049 1 0923 000
0647 048 0 0805 061 = 0924 000
0648 053 5 0806 107 STO MEM AM00: loop counter
0649 002 HALT 0807 048 0 AM01: indirect pointer
0650 000 0808 048 0 AM02: used
0651 096 LABEL 0809 096 LABEL AM03: used
0652 080 P 0810 099 Cosine AM04: used
0653 109 RCL MEM 0811 109 RCL MEM AM05: decimal number entered
0654 048 0 0812 048 0 AM07: number of hexadecimal digits
0655 053 5 0813 048 0 1205 000
0656 107 STO MEM 0814 045 - Program is initialized by entering the
0657 048 0 0815 049 1 number of hexadecimal digits,
0658 052 4 0816 061 = and pressing <F3>
0659 156 New Line 0817 064 Inverse 1326 000
0660 212 |T| 0818 108 LOG 10 1327 000
0661 232 |h| 0819 107 STO MEM 1328 000
0662 229 |e| 0820 048 0 1329 000
0663 160 | | 0821 050 2 1330 000
0664 246 |v| 0822 109 RCL MEM 1331 000
0665 225 |a| 0823 048 0 1332 000
0666 236 |l| 0824 051 3 1333 000
0667 245 |u| 0825 047 / 1334 000
0668 229 |e| 0826 109 RCL MEM 1335 000
0669 160 | | 0827 048 0 1336 000
0670 239 |o| 0828 050 2 1337 000

ELEMENTARY PROGRAMMING

Page 60

Find Commands

ASTROCAL has three find commands. One of the find commands enables you to relocate
the program counter to the next blank instruction. This is usually the first free
instruction in program memory. Finding the next occurrence of a blank instruction
is accomplished by pressing CTRL·u. If the program does not have any blank
instructions, CTRL·u will position the program counter to the first free
instruction. Subsequent presses of CTRL·u simply single-steps in the blank area of
program memory. In cases where there are one or more blank instructions in program
memory ── intervening actual program code ── press CTRL·w to relocate the program
counter to the first free instruction.

The last find command requires two steps to complete:

 1. Press CTRL·f to set up the instruction find command.

 2. Press the key for the instruction you wish to find.

The instruction find command requires the CTRL·f/key pair for each instruction
sought. This means if you have more than one occurrence of the same instruction in
program memory, you have to press CTRL·f followed by the sought after instruction
for each find. You find remarks with CTRL·f followed by CTRL·r.

PROGRAM DEBUGGING

Single-Step Execution

The ↓ key in the calculate mode causes actual execution of the stored program one
step at a time, and enables the display-register as well as the program code and
instructions. SHIFT·ENTER exits the single-step instruction mode and resumes
normal execution.

Trace

Pressing x in the command mode effects repeating single-stepping. You can insert
an x in program memory to enable tracing whenever this instruction is encountered.
Similarly you can disable tracing with @x in the execute mode. Similar to the
execute mode, the trace mode can be stopped by pressing BREAK. Although the
single-step and trace modes enable the displaying of the program code, you are not
in the program mode as indicated with the absence of "PROG" present in the upper
right on the screen. The program code will blank whenever any key is pressed
except ↓. Another feature of an @x sequence encountered in the execute mode is to
un-blank the display, displaying the contents of the display-register at that
time. The display will not blank again, and only changes when a halt, hold, break
point, trace, or another inverse trace instruction is encountered regardless of
the contents of the display-register. This feature can be used to observe the
results of an iterative calculation to see if the results are diverging or
converging.

ELEMENTARY PROGRAMMING

 Page 61

Hold

Another debugging aid is the hold instruction, CTRL·h, that is only recognized in
the execute mode. The hold status is indicated with the presence of "$Hold" in the
upper right on the screen. Pressing any key except BREAK while on hold causes the
program to resume execution. The hold command can be used for halt without
transferring to the calculate mode. This feature enables you to look at results
without the capability to overwrite the display-register for arguments used for
the instructions that follow. Of course you can press BREAK to override this.
Also, the hold instruction can be used in places you will insert print
instructions, w, after the program has been completely debugged. You may find the
hold instruction useful as a substitute for print commands while the program is
still in the development stage without using excessive paper.

Break Point

The last debugging aid is the break-point instruction, CTRL·x. The break-point
instruction transfers the execute mode to the single-step mode and suspends
execution. You can single-step the program at this point with the ↓ key, or resume
execution with SHIFT·ENTER.

DEVELOPMENT OF PROGRAMMING STYLE

I would like to make a last point about the nature of the programming process,
whether for ASTROCAL or for a large-scale computer. There is no single correct
programming solution to a problem. Just as no two writers use exactly the same
words to describe the same thing, no two programmers use exactly the same
instruction sequences to solve a given problem. As you gain experience in
programming ASTROCAL, you will develop your own unique style. That style may
become one of incredible craftiness and ingenuity that makes frequent use of all
instructions available. Or it might become one of conservative and straightforward
coding, using primarily the more basic instructions, taking up more program memory
space, but so clear in purpose that program operation can be easily discerned by
inspecting the code. Each of these style extremes has advantages and shortcomings.
The best style for you is the one that best meets your needs: If you can solve
your problems without use of conditional transfer instructions or indirect
addressing, then just don't use those instructions (until your needs change).

Many ASTROCAL users solve their problems very comfortably using only a portion of
ASTROCAL's capability. If, on the other hand your problems require complicated but
more efficient program structures, you will find yourself developing a style close
to the crafty-but-obscure end of the spectrum.

ELEMENTARY PROGRAMMING

Page 62

PRACTICE PROBLEMS

Example: Write a single program to convert temperature from Fahrenheit degrees to
Celsius using label A, and from Fahrenheit degrees to Kelvin degrees using label
B. The relevant equations are:

C = (5/9)(F - 32)
K = C + 273.15

Possible solution:

Location Code Instruction
 0000 158 Remark: <A> to convert Fahrenheit to Celsius
 0040 158 Remark: to convert Fahrenheit to Kelvin
 0080 096 LABEL
 0081 066 B
 0082 059 +
 0083 052 4
 0084 057 9
 0085 040 1
 0086 046 .
 0087 054 6
 0088 055 7
 0089 096 LABEL
 0090 065 A
 0091 045 -
 0092 051 3
 0093 050 2
 0094 061 =
 0095 058 x
 0096 053 5
 0097 047 /
 0098 057 9
 0099 061 =
 0100 002 HALT

The above coding is not the straightforward solution you might have expected,
however, it is a prime example of how two seemingly unrelated problems can be
programmed to function together.

ELEMENTARY PROGRAMMING

 Page 63

Example: Write a program to convert from spherical to rectangular coordinates.
Design the program so as to operate as follows:

Enter p, φ, and Θ respectively through the A, B, and C keys (in any order). Find
x, y, and z via the D key, with x given first, then press SHIFT·ENTER to display
y, and SHIFT·ENTER again to display z.

z = p cos φ x = p sin φ cos Θ y = p sin φ sin Θ

Possible solution:

Location Code Instruction Location Code Instruction
 0000 096 LABEL 0026 109 RCL MEM
 0001 065 A 0027 048 0
 0002 107 STO MEM 0028 050 2
 0003 048 0 0029 106 Pol/Rect
 0004 049 1 0030 103 EXC MEM
 0005 002 HALT 0031 048 0
 0006 096 LABEL 0032 048 0
 0007 066 B 0033 107 STO MEM
 0008 107 STO MEM 0034 048 0
 0009 048 0 0035 052 4
 0010 050 2 0036 109 RCL MEM
 0011 002 HALT 0037 048 0
 0012 096 LABEL 0038 051 3
 0013 067 C 0039 106 Pol/Rect
 0014 107 STO MEM 0040 103 EXC MEM
 0015 048 0 0041 048 0
 0016 051 3 0042 048 0
 0017 002 HALT 0043 002 HALT
 0018 096 LABEL 0044 109 RCL MEM
 0019 068 D 0045 048 0
 0020 109 RCL MEM 0046 048 0
 0021 048 0 0047 002 HALT
 0022 049 1 0048 109 RCL MEM
 0023 107 STO MEM 0049 048 0
 0024 048 0 0050 052 4
 0025 048 0 0051 002 HALT

Again, the proposed solution is a bit tricky; and, provided that your program
gives the correct answer, mine is no better. Even so, it may be instructive to see
how the program segment starting at label D works. The nine steps preceding the
Pol/Rect sets up the polar to rectangular conversion to produce p sin φ in the
display and z in AM00. Next, I exchange the contents of the display and AM00 and
store z away in AM04 for later recall. Next, I recall Θ into the display-register
from AM03 and perform another polar to rectangular conversion leaving y in the
display-register and x in AM00. Another exchange places x where I want it for the
first program result, the display-register. Following the HALT to enable us to see
the value of x, y is recalled from AM00 and another program halt is provided.
Finally, z is recalled from AM04 and the program is halted for the last time.

ELEMENTARY PROGRAMMING

Page 64

Example: Write a program to compute the average value of any number of values X1,
X2, X3, ..., Xn. The desired operation is that after initializing using key D, the
values of X1, X2, etc. are entered using key A for each entry. It should not be
necessary to know the total number of values to be entered ahead of time; and at
any stage in the process the average of the X values up to that time should be
given by using key B.

Possible solution:

Location Code Instruction Location Code Instruction
 0000 096 LABEL 0014 096 LABEL
 0001 068 D 0015 066 B
 0002 093 CLR MEM 0016 040 (
 0003 002 HALT 0017 109 RCL MEM
 0004 096 LABEL 0018 048 0
 0005 065 A 0019 049 1
 0006 117 SUM MEM 0020 047 /
 0007 048 0 0021 109 RCL MEM
 0008 049 1 0022 048 0
 0009 049 1 0023 050 2
 0010 117 SUM MEM 0024 041)
 0011 048 0 0025 002 HALT
 0012 050 2
 0013 002 HALT

None of these problems are trivial. All are sufficiently complicated that you
would be more likely to solve them correctly through programming than by
attempting to perform all of the required operations directly from the keyboard in
the calculate mode. This is important, and I wanted to demonstrate it to you
through these examples. (Try performing these problem solutions in the calculate
mode.) The type of problems you will be able to solve reliably through the
several-stage process (problem definition, coding, program execution) using
ASTROCAL is much, much more complicated than would be possible without ASTROCAL.
The execution of some problems produces the equivalent result of hundreds or even
thousands of automated keystrokes, perhaps involving decisions to be made, as
well.

 TRANSFER INSTRUCTIONS

 Page 65

The background relating to transfer instructions was first presented in the
GENERAL PROGRAMMING section. However, this section enlarges on that basic
information to help you fully understand the uses of the transfer instructions.
There are two types: unconditional and conditional.

UNCONDITIONAL TRANSFER INSTRUCTIONS

There are two types of unconditional transfer instructions: the go-to instruction
?, "Goto", and the subroutine calls >, "Gosub". I will not discuss the subroutine
type here, deferring that discussion until the next section, which is devoted to
subroutines. Unconditional transfer to a given program location occurs when ?
followed by the four-digit address (program location number) of the destination,
is encountered in the program. For example the sequence ?0324 causes immediate
repositioning of the program counter to location 0324. The destination of a go-to
instruction can also be specified by means of a label name following the go-to
instruction. For example, the sequence ?s would cause a transfer to the first
location in the program after the sequence LABEL Sine.

Actually, either type of go-to command, specified by a four-digit address or by a
label name, can be executed in the calculate mode. However, when executed from the
calculate mode the only effect is to reposition the program counter. ASTROCAL
remains in the calculate mode following the ? command. Thus, the effect of
pressing ?A would be different from simply pressing A in this respect.

CONDITIONAL TRANSFER INSTRUCTIONS

There are basically four different conditional transfer instructions available (in
addition to the "Dec JPNZ", that is discussed later). They are "If flag", #, "If
error", $, "If pos", %, and "If zero", &. Each of these has an inverse instruction
as well. These four types of conditional transfer instructions all operate in the
same manner. At the time of encountering them, a test is made to determine if a
certain condition is true. If the result is affirmative, transfer is made to the
location specified by a four-digit address or label name immediately following the
instruction, just as in the unconditional transfers. A false result causes no such
transfer to take place, and the program counter continues to the next program
location immediately following the four-digit address or label.

The inverse instructions to these four are realized by prefixing the basic
conditional transfer instruction with @, "Inverse". These inverse conditional
transfer instructions test to determine if a certain condition is false. If the
condition is false, a transfer occurs and if true, no transfer takes place.

TRANSFER INSTRUCTIONS

Page 66

The eight types of tests made by these conditional transfer instructions are shown
below:

If error Is an error condition present (overflow, too

small, invalid argument, invalid operation)?
Transfer if the answer is yes.

Inverse If error Is an error condition present? Transfer if answer

is no.

If flag Is the program flag specified by the next digit (0

through 9) set? Transfer if the answer is yes.

Inverse If flag Is the program flag specified by the next digit

set? Transfer if answer is no.

If pos Is the content of the display-register positive

(equal or greater than zero)? Transfer if the
answer is yes.

Inverse If pos Is the content of the display-register positive.

Transfer if the answer is no.

If zero Is the content of the display-register exactly

zero. Transfer if the answer is yes.

Inverse If zero Is the content of the display-register zero.

Transfer if the answer is no.

These conditional transfer instructions do not affect pending operations, hence
they can appear anywhere desired in the program, except between multi-location
operands such as m35.

The If error and If flag conditional transfer instructions require a bit more
explanation. You will note that an "If error" instruction tests for an error
condition, that would cause "ERROR" flashing. Such an error will not halt
execution of a program unless programmed to do so by the "If error" instruction.
"ERROR" will continue to flash after the program halts unless CLR ERR or CLEAR
were executed in the program before it halted. Using "CLR ERR" will stop "ERROR"
flashing without affecting the displayed number.

The "If flag" instruction refers to the ten program flags that are indicators
which can be set (turned on, raised, set to one) or reset (turned off, lowered,
reset to zero) by commands in the program code or directly from the keyboard.
Manipulation of these flags is discussed in the following subsection.

 TRANSFER INSTRUCTIONS

 Page 67

SETTING AND RESETTING PROGRAM FLAGS

The ten program flags are initially set to zero when you initialize ASTROCAL. They
may each be set (or reset) from the keyboard or as the result of the appropriate
instructions executed during the running of a program. Whether from the keyboard
or in a program instruction sequence, the flags are set by the command Set flag,
", followed by the single-digit (0 through 9) identification number of the flag
affected. They are reset by means of the inverse instruction Inverse Set flag, @",
followed by the single-digit identification number.

There are a number of uses of the program flags; three of them are the following:

 1. Controlling program options from the keyboard prior to execution.

 2. Effecting a delayed conditional transfer based upon a test more conveniently

made earlier.

 3. Keeping track of execution history ── which path through the program has led

to the present point?

To illustrate the first of these three uses, assume that you wish to run a program
that normally prints out four or five different quantities. However, at times some
of these quantities are of little interest, and you would prefer to shorten the
run time by computing and printing only one of them. This could be done by placing
the appropriate If flag instructions in the program code. If you wanted only the
main output, you might set the appropriate flag; whereas, if you desired all of
the answers, you would have the flag reset. Or perhaps you would desire more
flexibility and set flag 0 to compute and print variable X0, set flag 1 to compute
and print variable X1, etc. That way if you wanted to see X1, X3 and X4 you would
set flags 1, 3, and 4 just prior to execution.

To illustrate the second use, suppose that you have reached a certain point in the
code to solve a problem and what is to be done subsequently depends on whether the
display-register contents are positive. If the results are positive, you wish to
execute a sequence of eighteen instructions (which is abbreviated [S18]) and then
go to location 0345. If the results are not positive, you wish to execute the same
set of eighteen instructions then not go to location 0345 but rather continue
without a transfer. Thus, the point of the conditional transfer is eighteen steps
beyond the point of the desired test. This problem is conveniently handled using
the program flags as the following sequence demonstrates.

TRANSFER INSTRUCTIONS

Page 68

Location Code Instruction Location Code Instruction
 0000 037 If pos 0011 096 LABEL
 0001 098 D.MS/D.d 0012 105 Indirect
 0002 064 Inverse ··· [S18]
 0003 034 Set flag 0031 035 If flag
 0004 055 7 0032 055 7
 0005 063 Goto 0033 048 0
 0006 105 Indirect 0034 051 3
 0007 096 LABEL 0035 052 4
 0008 098 D.MS/D.d 0036 053 5
 0009 034 Set flag 0037 ··· etc.
 0010 055 7

The third use gives you a means of remembering in the program execution whether
you have arrived at a given crucial point by one path (path A) or another (path
B). What you wish to do at this point depends on which path your program has
taken. You recall the program counter only knows where it is and has no
recollection as to how it came there. Yet such recollection ability is sometimes
needed, and the program flags do this admirably. One simply places a set-flag
instruction in one path, and a reset-flag instruction in the other; and the
execution history is recovered through an if-flag instruction wherever desired.

Finally the , (comma) "Reset" instruction resets all ten flags as well as clears
the subroutine return-pointer registers and positions the program counter to the
top of the program memory (0000).

CONDITIONAL TRANSFER EXAMPLES

You can test your understanding of the conditional transfer instructions by
studying the following examples. Each example is a segment of code whose effect is
given under "Explanation:"

Example:

Location Code Instruction
 0000 064 Inverse
 0001 036 If error
 0002 051 3
 0003 050 2
 0004 049 1
 0005 054 6
 0006 002 HALT

Explanation: If no error condition is present transfer is made to location 3216;
otherwise, the program executes the next instruction (HALT). This is an example
where you would halt execution if an error condition is present.

 TRANSFER INSTRUCTIONS

 Page 69

Example:

Location Code Instruction
 0000 035 If flag
 0001 056 8
 0002 048 0
 0003 048 0
 0004 050 2
 0005 050 2
 0006 116 Tangent

Explanation: If flag 8 is set, transfer is made to location 0022; otherwise, the
program continues taking the tangent of the display-register contents.

Example:

Location Code Instruction
 0017 064 Inverse
 0018 037 If pos [% key]
 0019 041)
 0020 122 Sw MODE
 0021 096 LABEL
 0022 041)

Explanation: If the contents of the display-register is positive then transfer to
the location after the sequence LABEL); otherwise, change the angular mode.

Example:

Location Code Instruction Location Code Instruction
 0000 096 LABEL 0010 096 LABEL
 0001 083 S 0011 120 trace
 0002 038 If zero 0012 048 1
 0003 120 trace 0013 096 LABEL
 0004 047 / 0014 119 print
 0005 115 Sine 0015 107 STO MEM
 0006 061 = 0016 053 5
 0007 114 1/x 0017 055 7
 0008 063 Goto 0018 002 HALT
 0009 119 print

Explanation: This is an entire program for computing y = (sin x)/x. The test for x
= 0 causes the execution to bypass much of the calculation if x = 0, arriving at
the location behind the sequence LABEL trace (location 0012). If x <> 0, x/(sin x)
is formed. Then we form (sin x)/x and skip over the 1 to store the answer into
AM57 and then halt.

TRANSFER INSTRUCTIONS

Page 70

Example:

Location Code Instruction
 0000 037 If pos
 0001 044 reset
 0002 111 +/-
 0003 096 LABEL
 0004 044 reset
 0005 064 Inverse
 0006 113 Square

Explanation: If the display-register contents is positive, the program skips over
the change-sign instruction and forms the square root. In the other event, the
absolute value of the negative quantity is formed, then the square root is taken.

From the basis conditional transfer instructions you can synthesize other basic
conditional transfer instructions as shown in the table below:

 Transfer when: Instruction sequence

 A = B (A - B) If zero
 A <> B (A - B) Inverse If zero
 A > B (B - A) Inverse If pos
 A => B (A - B) If pos
 A < B (A - B) Inverse If pos
 A <= B (B - A) If pos

Example: Suppose you wish to determine if the display-register content, Q, is
less in magnitude than the quantity J stored in AM24. If that is the case, you
wish to recall AM45 and halt execution; otherwise, you wish to add Q to AM45 and
go to location 4321. This could be accomplished as follows:

Location Code Instruction
 0000 058 x Begin formation of quantity for
 0001 040 (testing. x stores Q into internal
 0002 113 Square processing register for safekeeping.
 0003 064 Inverse
 0004 113 Square Square-Inverse-square performs |Q|
 0005 045 -
 0006 109 RCL MEM
 0007 050 2
 0008 052 4
 0009 041) (|Q| - J)
 0010 064 Inverse
 0011 037 If pos Transfer on |Q| < J
 0012 008 $ hold $ to point labeled hold

 TRANSFER INSTRUCTIONS

 Page 71

 0013 049 1 Overwrite |Q| - J with 1.
 0014 061 = Complete pending multiply of Q:
 0015 117 SUM MEM Q x 1 = Q.
 0016 052 4
 0017 053 5 Q added to AM45
 0018 063 Goto
 0019 052 4
 0020 051 3
 0021 050 2
 0022 049 1 Transfer
 0023 096 LABEL
 0024 008 $ hold $
 0025 094 CLEAR
 0026 109 RCL MEM
 0027 052 4
 0028 053 5
 0029 002 HALT When |Q| < J

These examples were not chosen for their simplicity, so don't be discouraged if
you have to study them in order to understand them. They are very realistic in the
way conditional transfer instructions are used in actual programs. So, as you
master these examples you are learning not just what these instructions do, but
also how they are used. One sure way to develop your competence in this area is
through practice and actual use of these features to accomplish desired objectives
in real programs.

DECREMENT AND JUMP NON-ZERO (Dec JPNZ)

A powerful instruction, especially useful in programming iterative routines, is
the decrement and jump non-zero command. At this point, I will assume that AM00
contains an integer. If this is not the case, the effect is as though AM00
contains the next larger integer. The effect of the "Dec JPNZ", ', is the
following:

 1. First decrement the magnitude of the quantity stored in AM00 by 1.

 2. If the resulting contents of AM00 is zero, do not transfer to the specified

address or label, but fall through to the next instruction.

 3. If the resulting contents of AM00 is not zero, transfer (jump) to the

specified address or label.

The "Dec JPNZ" instruction also has its inverse, obtained by the sequence @',
"Inverse Dec JPNZ". It functions in the same way except for reversing the test: If
the value is not zero the transfer is omitted; the transfer is made only if the
value is zero.

TRANSFER INSTRUCTIONS

Page 72

If the "Dec JPNZ" function and polar/rectangular conversions are both used in the
same program, it will be necessary to temporarily store the contents of AM00 in
another addressable memory register, perform the polar/rectangular conversion, and
return the proper data for the "Dec JPNZ" function to AM00.

To illustrate the use of the Dec JPNZ instruction, consider the following simple
examples.

Example: Using the Dec JPNZ instruction, compute the sum of all integers 1
through N. (Enter the value N, then press U.)

Solution:

Location Code Instruction Location Code Instruction
 0000 096 LABEL 0011 117 SUM MEM
 0001 085 U 0012 048 0
 0002 093 CLR MEM 0013 049 1
 0003 107 STO MEM 0014 039 Dec JPNZ
 0004 048 0 0015 117 SUM MEM
 0005 048 0 0016 109 RCL MEM
 0006 096 LABEL 0017 048 0
 0007 117 SUM MEM 0018 049 1
 0008 109 RCL MEM 0019 002 HALT
 0009 048 0
 0010 048 0

Example: Design a program to compute the following sum by merely entering the
number N of terms to be summed:

 N
 y = Σ logeN
 k=1

Solution:

Location Instruction Location Instruction Location Instruction
 0000 LABEL 0008 1 0016 0
 0001 A 0009 LABEL 0017 1
 0002 STO MEM 0010 / 0018 Dec JPNZ
 0003 0 0011 RCL MEM 0019 /
 0004 0 0012 0 0020 RCL MEM
 0005 0 0013 0 0021 0
 0006 STO MEM 0014 LOG e 0022 1
 0007 0 0015 SUM MEM 0023 HALT

Like the other transfer instructions, the destination used in a Dec JPNZ
instruction can be a label or a four-digit absolute address. Also, the Dec JPNZ
performs the test on the value in AM00 without recalling it from addressable
memory. Thus, pending operations are completely unaffected.

SUBROUTINES

 Page 73

Subroutines give you the capability to define a subprocess or function by a
sequence of code, and then to invoke that code almost as though it were a keyboard
function simply by calling it (either by its name, that is its label, or by its
starting address in program memory). Furthermore, the subprocess so defined may be
called more than once from anywhere in the program and, upon completion of its
purpose, control passes back to the main (or calling) routine at the next
instruction past the point of the call.

Such sub-processes that are invoked and then pass control back to the calling
sequence of code are known as subroutines. In ASTROCAL, subroutines called by the
main routine may themselves call subroutines which return control to them just as
though the first-level of subroutines were a main routine. Finally, upon invoking
all required second-level subroutines and completing their assigned tasks, the
first-level subroutines passes control back to the main routine. This main routine
can then call additional subroutines until the problem is complete. In addition,
the second-level subroutines may call third-level subroutines, which can call
fourth-level subroutines, which can call fifth-level subroutines, etc. up to a
seventy-second level subroutine. Although this may sound complicated, the coding
is actually simplified by this approach.

CALLING A SUBROUTINE

There are three methods of calling a subroutine. One is to use "Gosub", >,
followed by the label name of the subroutine being called. Thus >s calls the
subroutine labeled Sine, or >h calls the subroutine labeled Hyperbol.

Example: Suppose you need to evaluate the following polynomial for three
different values of X, and then sum the three results for a final answer.

 27X5 - 4X4 + 32X3 + 42X2 - 8 = ?

Solution: Assume X1 is stored in AM01, X2 is stored in AM02, and X3 is stored in
AM03. This problem is solved without duplicating the code to evaluate the
fifth-degree polynomial by using a subroutine, that I have named paper. The code
for the subroutine might be defined essentially as you write the polynomial:

SUBROUTINES

Page 74

Location Code Instruction Location Code Instruction
 0000 096 LABEL 0020 109 RCL MEM
 0001 097 paper 0021 052 4
 0002 040 (0022 050 2
 0003 107 STO MEM 0023 091 Exponent
 0004 052 4 0024 051 3
 0005 050 2 0025 058 x
 0006 091 Exponent 0026 051 3
 0007 053 5 0027 050 2
 0008 058 x 0028 059 +
 0009 050 2 0029 109 RCL MEM
 0010 055 7 0030 052 4
 0011 045 - 0031 050 2
 0012 109 RCL MEM 0032 113 Square
 0013 052 4 0033 058 x
 0014 050 2 0034 052 4
 0015 091 Exponent 0035 050 2
 0016 052 4 0036 045 -
 0017 058 x 0037 056 8
 0018 052 4 0038 041)
 0019 059 + 0039 060 Return

Notice in the subroutine code that the equals key is not used. An open parenthesis
at the beginning and close parenthesis at the end performs the necessary
polynomial evaluation without completing all pending operations in the main
routine as would be done by an =.

To obtain the final result, you do not want to write this code sequence down three
times, once using X1, once using X2, and once using X3. The following program code
calls the subroutine to evaluate the polynomial for each value of X and sums the
results.

Location Code Instruction Location Code Instruction
 0040 096 LABEL 0051 062 Gosub
 0041 086 V 0051 097 paper
 0042 109 RCL MEM 0052 059 +
 0043 048 0 0053 109 RCL MEM
 0044 049 1 0054 048 0
 0045 062 Gosub 0055 051 3
 0046 097 paper 0056 062 Gosub
 0047 059 + 0057 097 paper
 0048 109 RCL MEM 0058 061 =
 0049 048 0 0059 002 HALT
 0050 049 2

In this program, the subroutine is called by the sequence Gosub paper, where paper
is the label for the subroutine. In the subroutine, the last instruction <,
"Return", returns control to the calling routine past the point of the call. The
foregoing example could also have been solved with a Dec JPNZ instruction in
combination with indirect addressing, an advanced technique discussed in the next
section.

SUBROUTINES

 Page 75

Example: Construct a program to compute the expression Y1Y2 + (logeY3) *
(Y4 + eY5), where each of the quantities Y1 through Y5 is sufficiently complicated
that its computation requires a subprocess.

Solution:

Location Code Instruction Location Code Instruction
 0000 096 LABEL 0011 058 x
 0001 065 A 0012 040 (
 0002 062 Gosub 0013 062 Gosub
 0003 103 EXC MEM 0014 117 SUM MEM
 0004 091 Exponent 0015 059 +
 0005 062 Gosub 0016 062 Gosub
 0006 107 STO MEM 0017 118 PROD MEM
 0007 059 + 0018 064 Inverse
 0008 062 Gosub 0019 110 LOG e
 0009 109 RCL MEM 0020 061 =
 0010 110 LOG e 0021 002 HALT

This solution uses the subroutines labeled EXC MEM, STO MEM, RCL MEM, SUM MEM, and
PROD MEM just as it would use the quantities Y1 through Y5. In other words, the
main routine is programmed as one would normally write algebra. Everywhere that
Gosub RCL MEM appears, the subroutine provides the actual value of Y3 to the main
routine.

It is irrelevant where the subroutine is stored relative to the location of the
calling routine. In fact, except for the obscurity of program structure, a
subroutine can actually be a portion of the calling routine. Taking this approach
to the extreme, a program segment can actually call itself as a subroutine! But
you should avoid even thinking about such recursive structures for now.

The second method for calling a subroutine pertains to subroutines labeled A
through Z. Subroutines with these labels may be called by just their names. That
is, you may omit the Gosub instruction.

Example: Construct a main routine that computes a + bc by calling subroutines A,
B, and C.

Location Code Instruction Location Code Instruction
 0000 096 LABEL 0004 066 B
 0001 082 R 0005 091 Exponent
 0002 065 A 0006 067 C
 0003 059 + 0007 061 =
 0008 002 HALT

The third method enables you to call unlabeled sequences of code as subroutines.
To do this, use Gosub followed by a four-digit address of the first program
location in the desired subroutine. Thus Gosub 8231 calls the subroutine beginning
at location 8231.

SUBROUTINES

Page 76

LABELING A SUBROUTINE

You have just seen that a subroutine need not be labeled (unless you also desire
to invoke it directly from the keyboard using the user-defined keys). It is a
recommended practice, however, because it adds to the clarity of the program code
── particularly if the labels are chosen well and the program documentation
records the meaning of each label. In addition, by labeling subroutines you can
write the code that calls the subroutines before you know where those subroutines
will be positioned. This also means inserting or deleting instructions after the
program is stored will not require changing the location address of the subroutine
calling instructions. The rules for labeling subroutines are identical in every
respect to the rules for labeling any program segment.

AVOID USING = IN SUBROUTINES

One should use = (equals instruction) only with great discretion in subroutines,
and preferably not at all. The reason is that the equals instruction completes all
pending operations. Some of these pending operations may be created in the calling
routine; so that an equals instruction in the subroutine would complete these
operations improperly. As an illustration, in the previous example, I easily
created a program to compute a + bc with calls to subroutines A, B, and C. I did
not bother to define the subroutines in the example. Now imagine that subroutine B
contained an equals instruction. Suppose that it has one such instruction just
before the return instruction. The result would be to complete the pending
addition with a; so that I would have (a+b) at that point. Whatever then occurred
in subroutine C, would produce the wrong answer. If subroutine C had no equals
instruction, I would obtain (a+b)c as the final result.

Avoiding the equals instruction in such cases should impose no hardship, for you
learned in the ARITHMETIC CALCULATIONS section that enclosing an expression in
parentheses is sufficient to evaluate it. Accordingly, well written subroutines
often begins with a (and end with a) just before the return instruction.

Whenever the subroutine requires repeated access to Q (the display-register
contents at the time of the call), the subroutine may include a store instruction
prior to performing arithmetic. If Q is only needed to begin the subroutine
computation, a dummy memory operation is often convenient. This last situation
often leads to subroutines beginning with sequences such as:

Location Code Instruction
 1234 096 LABEL
 1235 088 X
 1236 040 (
 1237 109 RCL MEM
 1238 059 +
 1239 ··· etc.

SUBROUTINES

 Page 77

THE RETURN INSTRUCTION

The last instruction in a subroutine, the one that returns control to the calling
routine, is always a return instruction <, "Return". I have described what occurs
when a return instruction is encountered: a transfer is effected to the first
instruction after the point of the call in the calling routine.

The following rule makes it easy to use subroutines as main routines. If a return
instruction is encountered when there is in fact no calling program awaiting
return of control, then a halt occurs, control passes back to the keyboard, and
the program counter resides at the first location after the return instruction.

Occasionally programs are designed so that completion of execution can occur
inside a subroutine. In other words, the answer to the problem (or perhaps
detection of an error in the problem) has been obtained without returning control
to the calling routine. In such situations return-of-control remains pending, the
subroutine return-pointer registers are left with the pointers back to the
unsatisfied return point(s) in the calling routine(s). Unless ASTROCAL is
re-initialized, the very next time a return instruction (used for HALT) is
encountered in a new problem, any pending returns remaining from the last problem
will be satisfied. This would rarely be the intended effect, and an improper
execution would result. To prevent such leftover return pointers from ruining
proper execution of the next problem, the reset instruction , (comma) "Reset"
should be used to reset the return-pointer registers. This may be done manually,
but it is preferable, when possible, to include the reset instruction at the
proper point in the program code, with a halt instruction at location 0000.

SUBROUTINE PRACTICE PROBLEMS

Example: Construct a subroutine to take the integer part of Q and place the
fractional part into AM33. It should be so designed that it can be used without
disturbing pending operations in the calling routine.

Solution: I will construct a solution for Q > 0 and let you work out the more
general case as an exercise.

Location Code Instruction Location Code Instruction
 0000 096 LABEL 0010 102 Fix Dec.
 0001 073 I 0011 048 0
 0002 040 (0012 048 0
 0003 107 STO MEM 0013 101 EE
 0004 051 3 0014 064 Inverse
 0005 051 3 0015 117 SUM MEM
 0006 045 - 0016 051 3
 0007 046 . 0017 051 3
 0008 053 5 0018 060 Return
 0009 041)

You will notice that this subroutine does leave the display in scientific notation
fix 0 format.

SUBROUTINES

Page 78

Example: Write a program to solve for f(x)=0, where f(x) is a subroutine defined
function provided by the user.

Solution: I can use Newton's method of solution. (This well known method does not
necessarily converge for all problems.) This method performs the iteration:
Xn+1 = Xn - f(Xn)/f'(Xn), where f'(Xn) is an estimate of the derivative of f at Xn.
The derivative is estimated by finite differences:

 f(Xn + δ) - f(Xn - δ)
 f'(Xn) = ───────────────────────
 2δ

Preserving all data registers except AM98 and AM99 for you to use in the
definition of f(x), I will produce the following main routine that you should find
not only instructive as to the use of subroutines but useful in your problem
solving as well.

Location Instruction Location Instruction Location Instruction
 0000 LABEL 0028 EE 0056 EE
 0001 Z 0029 8 0057 8
 0002 STO MEM 0030 +/- 0058 +/-
 0003 9 0031) 0059)
 0004 8 0032) 0060 SUM MEM
 0005 HALT 0033 N 0061 9
 0006 LABEL 0034 - 0062 9
 0007 X 0035 (0063 If pos
 0008 STO MEM 0036 RCL MEM 0064 +
 0009 9 0037 9 0065 +/-
 0010 9 0038 9 0066 LABEL
 0011 LABEL 0039 x 0067 +
 0012 C 0040 (0068 -
 0013 (0041 1 0069 RCL MEM
 0014 RCL MEM 0042 + 0070 9
 0015 9 0043 EE 0071 8
 0016 9 0044 8 0072 =
 0017 N 0045 +/- 0073 If pos
 0018 / 0046) 0074 C
 0019 (0047) 0075 RCL MEM
 0020 (0048 N 0076 9
 0021 RCL MEM 0049) 0077 9
 0022 9 0050 x 0078 Inverse
 0023 9 0051 RCL MEM 0079 EE
 0024 x 0052 9 0080 HALT
 0025 (0053 9 0081 LABEL
 0026 1 0054 x 0082 N
 0027 - 0055 2

You can save this useful routine to disk leaving the subroutine labeled N user
programmable for various problems.

SUBROUTINES

 Page 79

The instructions for using this program are as follows:

 1. Press CTRL·p to enter the program mode.

 2. Load the program from disk (CTRL·l then filespec).

 3. Press CTRL·w to go to location 0083.

 4. Key in the definition of your function f(x) assuming x is in the

display-register to begin with and f(x) must be left in the display-register
at the end. You cannot use = in this subroutine, and all addressable memory
registers except AM98 and AM99 are available.

 5. End your subroutine with a Return instruction.

 6. Press CTRL·p to return to the calculate mode.

 7. Input the desired accuracy (.001, .0000001, etc.) and press Z.

 8. Input guess answer and press X to execute using the guess answer as a starting

point. If the problem converges you will receive an answer.

Using this example, suppose you wished to solve for x such that logex = 0.2x.
Therefore, f(x) = 0.2x - logex and the subroutine at N could be as follows:

Location Code Instruction
 0081 096 LABEL The first two lines shown here
 0082 078 N are part of the saved program.

 0083 107 STO MEM
 0084 048 0
 0085 049 1
 0086 040 (
 0087 109 RCL MEM
 0088 058 x
 0089 046 .
 0090 050 2
 0091 045 -
 0092 109 RCL MEM
 0093 048 0
 0094 049 1
 0095 110 LOG e
 0096 041)
 0097 060 Return

The eight-digit answer to this problem is 1.2958555.

SUBROUTINES

Page 80

THIS PAGE INTENTIONALLY LEFT BLANK

INDIRECT INSTRUCTIONS

 Page 81

Every addressable memory register operation and every four-digit transfer
instruction has a counterpart instruction in the indirect form. These indirect
instructions add such flexibility in programming that new applications for them
will be continually found. They represent a sophisticated programming tool that
you can use to accomplish processing that you simply could not otherwise do.

INDIRECT ADDRESSABLE MEMORY REGISTER INSTRUCTIONS

There are seven basic addressable memory register instructions:

 1. STO MEM 4. SUM MEM
 2. RCL MEM 5. Inverse SUM MEM
 3. EXC MEM 6. PROD MEM
 7. Inverse PROD MEM

They all have one thing in common: In the instruction sequence that uses them, a
two-digit number must appear in the sequence just after each one to designate the
addressable memory register affected. The sequence RCL MEM 62 would recall the
value in AM62.

An indirect instruction is formed by preceding the normal direct instruction by i,
"Indirect". What would be the effect of Indirect RCL MEM 44? This instruction
sequence recalls the value not in AM44 (addressable memory register 44) but rather
the value in the addressable memory register named by the contents in AM44. For
example if the value stored in AM44 were 50 then im44 would recall the value
stored in AM50.

Whenever a value stored in an addressable memory register is not used as another
number but as an address (in this case an addressable memory register number,
hence an addressable memory register address) it is called a pointer. The pointer
points to the addressable memory register; its address is the value of the
pointer. In these indirect instructions, the content of the addressable memory
register directly designated in the instruction is used as a pointer.

In the above example, Indirect RCL MEM 44 means: "Use the contents of AM44 as a
pointer to the addressable memory register whose contents are to be recalled."
Similarly, Indirect STO MEM 92 would mean: "Use the contents of AM92 as a pointer
to the addressable memory register into which to store the display-register
value." The indirect instructions use the absolute integer value of the
addressable memory registers for the pointer. That is, if AM13 contained -33.999,
then the instruction sequence of Indirect RCL MEM 13 would recall the contents of
AM33.

INDIRECT INSTRUCTIONS

Page 82

The diagram below illustrates these concepts graphically.

Indirect
Instruction Register Contents

Indirect SUM MEM 40 ─> 40 ──────────> 671.25 ─────────d──────>ignored
 41 4.8134, 743.2<──────┐ (invalid
 42 3.239 │ register
 43 -34 │ number)
Indirect RCL MEM 44 ─> 44 ──────────> 50 ─────a─────┐ │
 46 0 │ │
Indirect RCL MEM 46 ─> 46 46.2 ─c─┐ points │
 46.2 is recalled from AM46 <──────────────┘ to │
 47 0 AM50 │
 48 0 │ │
 49 488148418 │ │
754 is recalled <──── 50 <────────── 754 <─────────┘ │
from AM50 51 896.215 points to
 52 876 AM41
Indirect STO MEM 53 -> 53 ──────────> -41 ───────b────────┘
(743.2 in display) 54 0.0004562

This diagram shows the effect of Indirect RCL MEM 44 as the path of events marked
a: the result is to recall the value AM50 = 754. The effect of Indirect STO MEM 53
is shown in the path of events marked b: the result is to store 743.2 into AM41,
formally containing 4.8134. Finally, the result of Indirect RCL MEM 46 in this
example is marked c: the pointer points back to addressable memory register 46 so
that the result is to recall the value AM46 = 46.2.

It is implied that any pointer used as the consequence of any indirect instruction
must point to a realizable addressable memory register. Accordingly, the result of
the Indirect SUM MEM 40 in the example diagram would be ignored ── there is no
addressable memory register 671.

Example: You enter a varying number of data items and have them stored
successively in addressable memory registers AM01, AM02, etc., with the total
number of items entered in AM00.

Location Code Instruction Location Code Instruction
 0000 096 LABEL 0010 096 LABEL
 0001 065 A 0011 066 B
 0002 035 If flag 0012 105 Indirect
 0003 048 0 0013 107 STO MEM
 0004 066 B 0014 048 0
 0005 049 1 0015 048 0
 0006 107 STO MEM 0016 049 1
 0007 048 0 0017 117 SUM MEM
 0008 048 0 0018 048 0
 0009 034 Set flag 0019 048 0
 0010 048 0 0020 060 Return

INDIRECT INSTRUCTIONS

 Page 83

Example: Five quantities, X1, X2, X3, X4, and X5 have been computed and stored (in
order) into addressable memory registers AM01 through AM05. Five other quantities
Y1 through Y5 have been similarly stored into AM06 through AM10. You wish to create
a short segment of code in your program to compute the average value of the five
quantities Zk = Xk/Yk (k = 1, 2, 3, 4, 5).

Solution:

Location Code Instruction Location Code Instruction
 0000 053 5 0021 105 Indirect
 0001 107 STO MEM 0022 109 RCL MEM
 0002 048 0 0023 049 1
 0003 048 0 0024 050 2
 0004 049 1 0025 041)
 0005 048 0 0026 117 SUM MEM
 0006 107 STO MEM 0027 049 1
 0007 049 1 0028 049 1
 0008 050 2 0029 049 1
 0009 048 0 0030 064 Inverse
 0010 107 STO MEM 0031 117 SUM MEM
 0011 049 1 0032 049 1
 0012 049 1 0033 050 2
 0013 096 LABEL 0034 039 Dec JPNZ
 0014 110 LOG e 0035 110 LOG e
 0015 040 (0036 040 (
 0016 105 Indirect 0037 109 RCL MEM
 0017 109 RCL MEM 0038 049 1
 0018 048 0 0039 049 1
 0019 048 0 0040 047 /
 0020 047 / 0041 053 5
 0042 041)

You could have coded the solution to this problem differently, but if your
solution is concise, you doubtless used an indirect instruction. Now try doing the
problem without indirect instructions and note the economy achieved by using
indirect instructions.

The next example illustrates not only the programming design considerations, but
also demonstrates the desirable method of top-down design.

INDIRECT INSTRUCTIONS

Page 84

Example: Design a program to build a ten-window histogram given that the data
items are in the range a < x <= b, where a and b are inputs. You desire the
program to store the results for the number of counts in each bin in addressable
memory register 01 though 10. The data will be entered one at a time through X.
This is a long problem, but it illustrates the top-down approach that makes things
easy.

Solution: First write the main routine, assigning AM99 to contain the bin number
that the current value of data contributes a count into.

MAIN ROUTINE
Location Code Instruction
 0000 096 LABEL
 0001 088 X
 0002 067 C
 0003 107 STO MEM
 0004 057 9
 0005 057 9
 0006 049 1
 0007 105 Indirect
 0008 117 SUM MEM
 0009 057 9
 0010 057 9
 0011 002 HALT

The next step is to define subroutine C that finds the proper bin number.

The proper bin number for the value x is given by the equation

 n = 1 + 10 x INT[(x - a)/(b - a)],

where INT[y] = "integer part of y." Allocating AM98 and AM97 to a and b
respectively, one can write the following without difficulty.

BIN NUMBER SUBROUTINE
Location Code Instruction Location Code Instruction
 0012 096 LABEL 0028 045 -
 0013 067 C 0029 109 RCL MEM
 0014 040 (0030 057 9
 0015 040 (0031 056 8
 0016 040 (0032 041)
 0017 107 STO MEM 0033 041)
 0018 045 - 0034 068 D
 0019 109 RCL MEM 0035 058 x
 0020 057 9 0036 049 1
 0021 056 8 0037 048 0
 0022 041) 0038 059 +
 0023 047 / 0039 049 1
 0024 040 (0040 041)
 0025 109 RCL MEM 0041 060 Return
 0026 057 9
 0027 055 7

INDIRECT INSTRUCTIONS

 Page 85

By now you should be used to the dummy store instruction used to provide a
first-argument following the opening of a left parenthesis. But what was done
about the INT function? I simply gave it the name "D" and deferred its coding
until now. the value of the argument of the integer function is greater than zero,
so you can use the integer subroutine given as an example in the last section
dealing with subroutines.

Fixing up the resulting display format and discarding unnecessary features from
the last section in the following version produces the following code.

INTEGER-VALUE SUBROUTINE
Location Code Instruction Location Code Instruction
 0042 096 LABEL 0050 102 Fix Dec.
 0043 068 D 0051 048 0
 0044 040 (0052 048 0
 0045 107 STO MEM 0053 101 EE
 0046 045 - 0054 064 Inverse
 0047 046 . 0055 101 EE
 0048 053 5 0056 064 Inverse
 0049 041) 0057 102 Fix Dec.
 0058 060 Return

There are only two more details to complete and the problem is solved: I should
make it convenient to enter the values of a and b and to initialize AM01 through
AM10 to zero. Because it is natural to enter a at A and b at B, I write:

Location Code Instruction Location Code Instruction
 0059 096 LABEL 0066 096 LABEL
 0060 065 A 0067 066 B
 0061 093 CLR MEM 0068 107 STO MEM
 0062 107 STO MEM 0069 057 9
 0063 057 9 0070 055 7
 0064 056 8 0071 002 HALT
 0065 002 HALT

and the problem is solved. Furthermore, the top-down method enabled you to think
of one thing at a time rather than immediately being embroiled in details.

Note that it was necessary to write the subroutines so as not to disrupt any
pending operations: The required effect of the subroutines was to replace x in the
display-register with f(x) without affecting anything pending. But you should
always write your subroutines that way anyway; in that manner your programs will
be safe.

This problem illustrates much in addition to the use of the Indirect SUM MEM used
to tally the counts in the ten bin-registers.

INDIRECT INSTRUCTIONS

Page 86

Next, I cite a fairly short and simple example to show the rapid increase in the
complexity of the processing logic which happens when one combines indirect
instructions in an instruction sequence.

Example: Consider the code sequence given by:

Location Code Instruction
 0000 105 Indirect
 0001 109 RCL MEM
 0002 048 0
 0003 049 1
 0004 107 STO MEM
 0005 057 9
 0006 057 9
 0007 105 Indirect
 0008 109 RCL MEM
 0009 057 9
 0010 057 9

What is the effect of this short instruction sequence? Imagine that the number 15
is stored in AM01, that the number 4 is stored in AM15, and that the number
1.41421356 is stored in AM04. The first indirect recall instruction automatically
establishes that the pointer in AM01 points to AM15 and recalls its contents, the
integer 4. This value is placed into AM99. The next indirect recall instruction
then uses the pointer in AM99 to recall the contents of AM04, namely 1.41421356.
The overall effect of this sequence is to produce a second-level indirect recall.
That is, the effect is to find the pointer in the register first named in the
sequence (AM01), use this pointer to find the location of the next pointer (AM15),
and finally use the pointer found there to point and bring the actual number
recalled to the display. It is invalid to code the sequence:

 Indirect
 Indirect
 RCL MEM
 0
 1

However, the example shows that you can concisely synthesize instruction sequences
that have that intended effect.

INDIRECT INSTRUCTIONS

 Page 87

INDIRECT PROGRAM-TRANSFER INSTRUCTIONS

You have seen how that preceding normal memory operation with Indirect turns that
instruction into an indirect instruction. The two-digit number specified in the
indirect instruction is the addressable memory register containing not the needed
value, but a pointer to where that number is to be found.

In a similar manner, all of the following instructions can be converted to the
indirect form:

 Goto Gosub
 If flag n Inverse If flag n
 If error Inverse If error
 If zero Inverse If zero
 If pos Inverse If pos
 Dec JPNZ Inverse Dec JPNZ

When any of these instructions are preceded by Indirect the absolute address for
the transfer is found in the addressable memory register designated by the
two-digit number in the instruction sequence.

Example: Suppose AM14 contains 2368.2133: Then the instruction sequence Indirect
Goto 14 would cause an unconditional transfer to location 2368.

Example: Suppose AM34 contains 7: Then the instruction sequence Indirect Inverse
If flag 3 34 would cause transfer to location 0007 if flag 3 is not set.

Example: AM19 contains 21: Then the sequence Indirect Dec JPNZ 19 would cause a
decrement of AM00, transfer to location 0021 if the result (decrementing of AM00)
is non-zero, or execute the next instruction if the result is zero.

Example: The sequence Indirect Gosub 23 would call the subroutine beginning at
the location pointed to by the contents of AM23.

There is something to note about the indirect transfer instructions. They all
eventually reach the destination address through the absolute location (0000
through 9999), and never by means of a label. One cannot store a label in the
addressable memory register; but one can store a pointer to the destination
program memory location. A number stored in an addressable memory register for
indirect addressing need not be entered with leading zeroes and is the only
exception to the four-digit requirement for specifying program locations. The
indirect transfer specification requires two less digits in the sequence than the
direct form. This results from the fact that two digits are required in the
instruction sequence to specify the addressable memory register rather than the
four digits necessary to specify the absolute transfer address.

INDIRECT INSTRUCTIONS

Page 88

Example: A quantity K is stored in AM77. You would like to form a case statement
with this quantity. That is, go to Address K: Address 1 if K = 1, Address 2 if K =
2, Address 3 if K = 3, Address 4 if K = 4.

Solution: Now consider a specific case where Address 1 = 0162, Address 2 = 0064,
Address 3 = 0111, and Address 4 = 0201.

Location Instruction Location Instruction Location Instruction
 0000 (0014 7 0028 -
 0001 RCL MEM 0015 7 0029 3
 0002 7 0016 - 0030)
 0003 7 0017 2 0031 If zero
 0004 - 0018) 0032 0
 0005 1 0019 If zero 0033 1
 0006) 0020 0 0034 1
 0007 If zero 0021 0 0035 1
 0008 0 0022 6 0036 Goto
 0009 1 0023 4 0037 0
 0010 6 0024 (0038 2
 0011 2 0025 RCL MEM 0039 0
 0012 (0026 7 0040 1
 0013 RCL MEM 0027 7

Although this may be a solution, it is not as concise as one available to you
using indirect transfer instructions. Instead of the above code, you could store
the numbers 162 into AM16, 64 into AM17, 111 into AM18, and 201 into AM19. Then
the following code performs the case-statement transferring:

Location Code Instruction
 0000 040 (
 0001 109 RCL MEM
 0002 055 7
 0003 055 7
 0004 059 +
 0005 049 1
 0006 053 5
 0007 041)
 0008 107 STO MEM
 0009 049 1
 0010 048 0
 0011 105 Indirect
 0012 063 Goto
 0013 049 1
 0014 048 0

Case statements represent a useful addition to your programming repertoire. With
them you can make software switches, whereby you can define and code several
processing options in a single program and then select which one to execute by
entering the option number K, desired. A case statement at the appropriate point
selects the proper code sequence for you.

INDIRECT INSTRUCTIONS

 Page 89

INDIRECT FIX-DECIMAL INSTRUCTION

Another sophisticated programming tool, the Indirect Fix Dec. instruction, enables
you to use an addressable memory register to control the number of decimal digits
displayed.

Example: Suppose AM46 contains 4.75: Then the instruction sequence Indirect Fix
Dec. 46 would be the same as the instruction sequence Fix Dec. 04. What this means
is you can continually calculate the maximum number of decimal digits to be
displayed, store the number in an addressable memory register, then use the
Indirect Fix Dec. instruction to display the calculated number of decimal digits.

Whenever a value stored in an addressable memory register is not used as another
data number but as a display control number it is called a formatter. The
formatter controls the display format. In these indirect instructions, the content
of the addressable memory register directly designated in the instruction is used
as a formatter.

INDIRECT PRINT INSTRUCTIONS

Just as the Indirect Fix Dec. instruction uses an addressable memory register to
format the display, the Indirect print instruction uses addressable memory to
control printing data. The Indirect print instruction will be covered in the next
section.

INDIRECT LOG 10 INSTRUCTION

The Indirect LOG 10 instruction is the only "Indirect" instruction that does not
use addressable memory. The Indirect LOG 10 instruction is used to quickly obtain
the magnitude of the displayed number. The result of an Indirect LOG 10
instruction is the power-of-ten exponent of the displayed number, i.e.,
INT(log10Q).

Example: Indirect LOG 10 893.23923 = ?

Enter Press Display
893.23923 i l 2.

Example: Indirect LOG 10 .0323 = ?

Enter Press Display
.0323 i l -2.

If the display contains zero, then an Indirect LOG 10 instruction will return
-9.999999999 9999 and "ERROR" will flash.

INDIRECT INSTRUCTIONS

Page 90

Example: You wish to control the display format to control the number of
significant digits displayed; however, if the number of decimals would to exceed a
specific value, convert the display to scientific notation. The number of
significant digits is entered using B, and the maximum number of decimals for
non-scientific displays is entered using C. The corresponding code sequences for
labels B and C can be executed early in the program, then, when the result is
calculated (in the display-register), a transfer to label A is made to display the
result in the desired format.

Location Instruction Location Instruction Location Instruction
 0000 LABEL 0036 = 0072 3
 0001 B 0037 If zero 0073 Inverse
 0002 STO MEM 0038 EE 0074 If flag
 0003 0 0039 Inverse 0075 9
 0004 4 0040 If pos 0076 Reset
 0005 HALT 0041 EE 0077 Return
 0006 LABEL 0042 LABEL 0078 LABEL
 0007 C 0043 Pol/Rect 0079 Reset
 0008 STO MEM 0044 RCL MEM 0080 EE
 0009 0 0045 0 0081 Indirect
 0010 5 0046 4 0082 LOG 10
 0011 HALT 0047 - 0083 +
 0012 LABEL 0048 1 0084 1
 0013 A 0049 = 0085 -
 0014 Inverse 0050 Set flag 0086 RCL MEM
 0015 Set flag 0051 9 0087 0
 0016 9 0052 EE 0088 2
 0017 Inverse 0053 LABEL 0089 =
 0018 Fix Dec. 0054 EE 0090 Inverse
 0019 Inverse 0055 STO MEM 0091 If zero
 0020 EE 0056 0 0092 Fix Dec.
 0021 STO MEM 0057 1 0093 RCL MEM
 0022 0 0058 + 0094 0
 0023 3 0059 RCL MEM 0095 3
 0024 Indirect 0060 0 0096 Inverse
 0025 LOG 10 0061 5 0097 EE
 0026 + 0062 = 0098 Return
 0027 1 0063 Inverse 0099 LABEL
 0028 = 0064 If pos 0100 Fix Dec.
 0029 STO MEM 0065 Pol/Rect 0101 RCL MEM
 0030 0 0066 Indirect 0102 0
 0031 2 0067 Fix Dec. 0103 3
 0032 - 0068 0 0104 EE
 0033 RCL MEM 0069 1 0105 Goto
 0034 0 0070 RCL MEM 0106 A
 0035 4 0071 0

This example stores the result in AM03. If the result would round to 1.00000 x 10?,
then the contents of AM03 could be modified.

PRINTING

 Page 91

PRINTING DATA

From the keyboard, the contents of the display-register can be printed at any time
by pressing print, w. The same instruction encountered in the program code causes
that action to take place in the execute mode. To illustrate this, consider the
following program example.

Example:

Location Code Instruction Location Code Instruction
 0000 096 LABEL 0010 119 print
 0001 071 G 0011 041)
 0002 040 (0012 119 print
 0003 109 RCL MEM 0013 059 +
 0004 054 6 0014 109 RCL MEM
 0005 052 4 0015 055 7
 0006 047 / 0016 057 9
 0007 109 RCL MEM 0017 119 print
 0008 051 3 0018 061 =
 0009 050 2 0019 119 print
 0020 002 HALT

In this example the following quantities are consecutively printed on separate
lines before the program halts:

1. M32
2. (M64 ÷ M32)
3. M79
4. M79 + (M64 ÷ M32)

To see all those quantities without a printer would require program halts and
manual resumptions.

PROGRAMMING IMPLICATIONS

You have seen that you can print data without halting the executing program.
Having the capability to print could influence the way you design that program. In
particular:

 1. You may delete halts for observing several results.

 2. You may print successive iterations of a repetitive calculation to see whether

the result is converging or diverging and when the calculation may be halted.

 3. You may monitor where the program execution is currently taking place through

printing clues or intermediate data. Timing information can also be obtained
this way so that you can find out which portions of your program are requiring
the most time.

PRINTING

Page 92

PAPER ADVANCEMENTS

The paper can be advanced (line-feed) in the calculate mode or execute mode by the
instruction paper, a. This feature is useful for separating groups of data or
positioning the paper to top-of-form.

INDIRECT PRINT INSTRUCTIONS

The Indirect print instructions use addressable memory registers as a formatter
for printing data. The Indirect print instructions do not send a carriage-return
character (13 decimal) after each data is printed. This enables you to print more
than one data on a print line.

The formatting of the printed data is controlled by the relative positions used in
the addressable memory register and not the value of the contents. i.e., 23.455
creates the same format as 17.001. The printed data prints a character position
for each digit (up to [DISPLAY SIZE]) in the addressable memory register plus one
trailing space. If the data to be printed has fewer digits than the addressable
memory register, then the data will print with leading spaces or trailing zeroes
as appropriate. If the data to be printed has more decimal digits than the
addressable memory register, then the additional digits will be truncated (not
rounded). If the data to be printed has whole numbers and the format pattern does
not have any whole digits, then the whole part will not print. However, if the
data has more whole digits (for formatting, a negative sign uses a digit position)
than the formatter then the whole part will print ?’s as appropriate. And the
exponent is only printed if the addressable memory register sign is negative.
Several examples are given to demonstrate the Indirect print instructions.

Example: AM48 contains .345

 Display-Register Instruction Printed data
 8.23 i w 48 .230
 94.34499 i w 48 .344
 0.03239 i w 48 .032
 -3.13 i w 48 .130
 0.87234 i w 48 .872
 -89.789923 i w 48 .789
 4.23933 1234 i w 48 .239

Example: AM48 contains 34.345

 Display-Register Instruction Printed data
 8.23 i w 48 8.230
 94.34499 i w 48 94.344
 0.03239 i w 48 0.032
 -3.13 i w 48 -3.130
 0.87234 i w 48 0.872
 -89.789923 i w 48 ??.789
 4.23933 1234 i w 48 4.239

PRINTING

 Page 93

Example: AM57 contains 892.238247

 Display-Register Instruction Printed data
 44.324 i w 57 44.324000
 2.33764 9323 i w 57 2.337640
 -7.7 i w 57 -7.700000
 0.4892 i w 57 0.489200
 111.11 i w 57 111.110000
-892.238247 i w 57 ???.238247

Example: AM03 contains -2.45886

 Display-Register Instruction Printed data
 3.233 i w 03 3.23300{seven spaces here}
 3.233 0123 i w 03 3.23300 0123
 3.233 -0123 i w 03 3.23300 -0123
 -3.33848 3202 i w 03 ?.33848 3202

Example: AM23 contains 10000.00001

 Display-Register Instruction Printed data
 3.233 i w 23 3.23300
 3.233 0123 i w 23 3.23300
 3.233 -0123 i w 23 3.23300
 -3.33848 3202 i w 23 -3.33848
 -3345.3234 i w 23 -3345.32340
-83234.9999 i w 23 ?????.99990
-9.99999999 i w 23 -9.99999

Example: AM23 contains 99999.99999

 Display-Register Instruction Printed data
 3.233 i w 23 3.23300
 3.233 0123 i w 23 3.23300
 3.233 -0123 i w 23 3.23300
 -3.33848 3202 i w 23 -3.33848

Example: AM23 contains 0

 Display-Register Instruction Printed data
 849.39494 i w 23 {one space}

A zero in an addressable memory register is the way to print one space, regardless
of the contents of the display-register.

Circumspectly use of the DOS Library Command FORMS along with the paper and
Indirect print commands enable you to control the position where data is printed.

PRINTING

Page 94

Example: You want to print a four place table of common logarithms from 1.00 to
9.99 with the characters 10, 11, 12, etc. to 99 printed in the left column.

Solution:

Location Code Instruction Location Code Instruction
 0000 096 LABEL 0046 048 0
 0001 065 A 0047 101 EE
 0002 049 1 0048 064 Inverse
 0003 048 0 0049 101 EE
 0004 107 STO MEM 0050 045 -
 0005 048 0 0051 109 RCL MEM
 0006 050 2 0052 048 0
 0007 046 . 0053 049 1
 0008 048 0 0054 061 =
 0009 048 0 0055 064 Inverse
 0010 048 0 0056 038 If zero
 0011 049 1 0057 122 Sw Mode
 0012 107 STO MEM 0058 097 paper
 0013 048 0 0059 096 LABEL
 0014 051 3 0060 120 trace
 0015 034 Set flag 0061 109 RCL MEM
 0016 049 1 0062 048 0
 0017 057 9 0063 049 1
 0018 048 0 0064 105 Indirect
 0019 048 0 0065 119 print
 0020 107 STO MEM 0066 048 0
 0021 048 0 0067 050 2
 0022 048 0 0068 096 LABEL
 0023 096 LABEL 0069 122 Sw Mode
 0024 066 Sine 0070 109 RCL MEM
 0025 049 1 0071 048 0
 0026 048 0 0072 049 1
 0027 048 0 0073 047 /
 0028 048 0 0074 049 1
 0029 045 - 0075 048 0
 0030 109 RCL MEM 0076 061 =
 0031 048 0 0077 102 Fix Dec.
 0032 048 0 0078 048 0
 0033 061 = 0079 052 4
 0034 047 / 0080 108 LOG 10
 0035 049 1 0081 105 Indirect
 0036 048 0 0082 119 print
 0037 061 = 0083 048 0
 0038 107 STO MEM 0084 051 3
 0039 048 0 0085 064 Inverse
 0040 049 1 0086 034 Set flag
 0041 035 If flag 0087 049 1
 0042 049 1 0088 039 Dec JPNZ
 0043 120 trace 0089 066 Sine
 0044 102 Fix Dec. 0090 097 paper
 0045 048 0 0091 002 HALT

ERROR CONDITIONS

 Page 95

A number of different situations result in a flashing "ERROR", signaling an error
condition. These conditions and the quantity when in (or upon returning to) the
calculate mode are summarized here.

Too-small and Overflow
When a calculation results in a non-zero quantity and the magnitude is less than 1
x 10-9999 a too-small condition exists and "ERROR" flashes with 1. -9999 in the
display-register. Similarly, if a magnitude equal to or greater than 10 x 109999
should occur, "ERROR" will flash and the display-register will contain 9.999999999
9999 to indicate an overflow condition.

Division by Zero
Attempting to divide by zero or to take the reciprocal of zero results in an error
with the same indication as for overflow.

Function Argument Outside of Range
The mathematical functions have certain restrictions placed on their arguments in
addition to those imposed by the overflow and too-small criteria. The functions,
invalid arguments, and the display-register contents are summarized below.

Function Invalid Argument Display-Register
 __ _ _
√x x < 0 √|x|
arc cosh x -1 < x < 1 |x|
arc cosh x x <= -1 arc cosh |x|
arc cosine x |x| > 1 x
arc sine x |x| > 1 x
arc tanh x |x| = 1 Overflow
arc tanh x |x| > 1 x
cosine x |x| => 10[precision] |x|
cosh x x > 23025.8509299··· Overflow
log10x x <= 0 log10|x|
logex x <= 0 loge|x|
sine x |x| => 10[precision] |x|
sinh x x > 23025.8509299··· Overflow
tangent x |x| => 10[precision] x
tanh x x > 23025.8509299··· 1
x! x < 0 or non-integer |INT(x)|! where INT(x) is the

integer part of x.
x! x => 3249 Overflow
xy x < 0, y is non-integer |x|y sign per INT(y)
y root of x x < 0 y root of |x|
y root of x x = 0, y = 0 1

Exceeding Capacity of Internal Registers
The internal processing registers can accommodate up to 85 (see page 1 for MAX-80
and the Model I/III) pending operations, and the parenthesis register can
accommodate up to 36 open left parentheses. Any calculation attempting to exceed
these maxima results in an error indication. "ERROR" flashes, and the extra
operator or extra left parenthesis is ignored.

ERROR CONDITIONS

Page 96

Undefined Transfer
Whenever an attempt is made to transfer to an undefined location, "ERROR" will
flash with the current contents of the display-register. The program counter will
proceed to execute the next instruction. Examples of such errors are:

 1. Attempting to transfer to a label address that has not been defined by means

of a label instruction.

2. Indirect transfers where the pointer is greater than 9999.

Attempt to Execute past Location 9999
Whenever the program counter reaches location 9999, if there is no HALT, Return,
Reset or other transfer instruction there, an error similar to Undefined Transfer
occurs except the program counter will remain at location 9999, and ASTROCAL will
transfer to the command mode.

Improper Operation Sequences
Various sequences of keystrokes are meaningless and result in an error condition.
Particularly, these include sequences with missing operands such as the following:

 RCL MEM 01 +) operand missing after +
 4.3 ÷ = operand missing after ÷ (= is ignored)

Such sequences with) or = immediately following an arithmetic operator or with
two consecutive operators (or two-variable functions) not separated by an operand
are improper. "ERROR" flashes with the display-register indicating the current
quantity.

Clearing an Error Condition
Pressing SPACE, "CLR ERR", stops the flashing "ERROR". In most cases this removes
all internal conditions indicating that an error is present. Whether the
calculation can proceed after an error has occurred depends on the type of error,
the problem, and quantities stored in addressable memory registers. However, there
is one error condition that remains latent after the flashing "ERROR" has been
stopped with "CLR ERR". When direct addressable memory register arithmetic results
in too-small or overflow, the error condition remains until the contents of that
addressable memory register is changed.

Errors Encountered in the Execute Mode
When any of the foregoing errors occur in the execute mode, what happens next
depends upon the programmer. Program halts are not an automatic consequence of an
error condition. "ERROR" flashes, the program continues, using the value in the
display-register for subsequent calculations. The answer may or may not be the
correct answer, depending upon the problem and the type of error condition.
However, it is the best selection that can be made in the absence of specific
programming directives to take other action. These directives, which should be
supplied in the program at points where error conditions might arise, utilize the
if-error conditional transfer instructions. On the other hand, your problem may be
one that executes until it reaches an error condition; if correctly programmed, it
would know what direction to take.

GLOSSARY

 Page 97

Address - A location in program memory, designated by either an absolute address
or a label assigned in a program.

Addressable Memory Register - One of the 100 storage areas in memory.

Algebraic Hierarchy - The rules providing a unique interpretation of an expression
that lacks a completely definitive set of parentheses.

Angular Mode - The two options, degrees or radians, in which angles are to be
expressed.

Back-step - To decrement the program counter in the program mode for editing
purposes.

Blank Instruction - An instruction that does nothing. This is used during step
insertion in program editing. When ASTROCAL is initialized, program memory is
filled with blank instructions.

Calculate Mode - The type of ASTROCAL operation in which calculations are
performed under step-by-step control from the keyboard.

Case Statement - A type of programming element wherein transfer is to be made to
one of n prescribed locations, depending upon a value (1 through n) of a control
variable K.

Chain Operation - A sequence of mathematical operations where the result of one
calculation is used as the starting point of the next, all the way to the end of
the sequence.

Clear - A generic term meaning to reset to the original zero starting condition.
One may clear entries only, clear display and pending operations, clear
addressable memory only, or reset program flags and clear subroutine
return-pointer registers.

Code - To write down the step-by-step instructions of a program. Or, the three-
digit representation of each key based upon its decimal value.

Conditional Transfer Instruction - A decision making program statement offering a
choice of ways to continue processing.

Control Flag - On/off program switches number 0 to 9 used as markers for various
events in a program. Two-state devices that can be changed from the keyboard or in
a program.

Coordinate Transformation - Conversion from polar coordinates to rectangular
coordinates or vice versa.

GLOSSARY

Page 98

Decision - The results obtained through use of the conditional transfer
instructions.

Degree Mode - One of the two options, degrees or radians, in which angles are to
be expressed.

Delete - The act of eliminating one or more program steps as a part of the editing
process. Subsequent steps are automatically moved up to fill the gap.

Direct Register Arithmetic - Performing addition, subtraction, multiplication, or
division upon the contents of an addressable memory register, leaving the answer
in that register, without recalling the register contents from memory.

Display - The n digit representation of the display-register, plus a four-digit
scientific notation exponent.

Display Format - The manner in which numbers are being displayed. There are two
independent issues: scientific notation usage and mantissa format.

Display-Register - The register that contains the quantity most recently computed,
recalled from memory, or entered from the keyboard.

Dummy Operation - Those program steps that serve solely to supply the current
display-register value as an operand.

Editing - The process of altering, adding, and deleting instructions as a final
process of creating a working and satisfactory program.

Error Condition - A variety of situations that arise when the calculation
encounters ill-defined quantities, improper operations, or numbers beyond the
capacity of ASTROCAL.

Exchange - The operation in which the content of the display-register is exchanged
with that of a specified addressable memory register.

Execute Mode - The ASTROCAL type of operation in which execution is under program
control.

Execution - The phase during which ASTROCAL is running under program control. The
controlling program is said to be in the process of execution.

Exponent - As used here, the power-of-ten associated with scientific notation
number representation.

Exponentiation - A two-variable function for raising x to the y power.

Expressions - Instruction sequences that acquire a value depending upon register
contents and which, when taken alone, leave no operation pending or operators
unsatisfied. Expressions set off by parentheses may be combined with other such
operations to form larger expressions.

Extraction of Roots - A built-in two-variable function for obtaining the y root of
x.

GLOSSARY

 Page 99

Flags (Program Flags) - On/off program switches number 0 to 9 used as markers for
various events in a program. Two-state devices that can be changed from the
keyboard or in a program.

Flow Chart - A programming design device that graphically charts the paths of
processing through a program.

Format - Either Display Format that is the manner in which numbers are being
displayed. Or Mantissa Format that is a convention for selecting the number of
significant digits to be displayed for the mantissa part of a number in scientific
notation or for the number displayed when scientific notation is absent.

Functions - The keyboard mathematical operations of one/two variables.

Function Key - One of the keys labeled F1, F2, or F3.

Improper Instruction - Sequences that are not proper in ASTROCAL discipline.

Indirect Instruction - Any instruction that uses the contents of a specified
addressable memory register as a pointer to the actual addressable memory
register, program address or print image format.

Initial Display Format - The display mode invoked when ASTROCAL in initialized. It
uses the initial mantissa format, but does not indicate scientific notation.

Initial Mantissa Format - The type of display wherein up to n digits are used to
represent a number. A decimal point can be present anywhere in the number, and
trailing zeroes are suppressed.

Insert - A program editing procedure whereby one pushes down all instructions from
the current location leaving a blank instruction. A new program instruction is
then inserted to take its place.

Instruction - One or more key steps that define an action to be taken in a
program.

Internal Processing Registers - The 85 registers which, along with the
display-register, are used by ASTROCAL to evaluate expressions with pending
operations without affecting the addressable memory registers. The MAX-80 and
Model I/III have fewer pending registers – see page 1.

Interruption - The act of halting program execution from the keyboard without
precise knowledge of the state of processing at the time of intervention.

Inverse Operation - Those operations that result when an operation is prefixed by
@, which reverses the effect of the operation.

GLOSSARY

Page 100

Key Code – The three-digit representation of each key based on its decimal value.

Key, User-Defined - One of the 26 functions, A through Z that provide a starting
point for program execution by merely pressing that key.

Label - A name assigned to a particular point in a program that can be referenced
by a transfer instruction or by program initialization.

Levels of Parentheses - The number of operations made pending by means of open
(left) parentheses.

List - To effect a step-by-step printed record of the instructions of a program.

Load Module - Any portion of a partitioned program that resides, in its entirety,
in program memory at some given time.

Location - Positions in program memory, 0000 through 9999.

Logical Test - Those tests performed as a part of conditional transfer
instructions.

Loops - Program structures in which an instruction sequence repeats a number of
times before exiting to other portions of the program.

Magnitude - The numerical size of a number regardless of its sign.

Mantissa - The number in scientific notation that is to be multiplied by a given
power-of-ten to equal the quantity desired.

Mantissa Format - Any given convention for selecting the number of significant
digits to be displayed for the mantissa part of a number in scientific notation or
for the number displayed when scientific notation is absent.

Memory - The generic term referring to both to program memory and addressable
memory. Program memory contains the program steps to solve a given problem and is
addressed 0000 through 9999. Addressable memory consists of the one hundred
addressable registers.

Memory Register - One of the 100 addressable storage areas in memory.

Modes of Operation - The calculate mode, program mode, and execute mode.

Operand - A number or numerical expression in a mathematical operation.

Operation - One of the four arithmetic functions, or one of the two-variable
functions.

Operator - Any function that mathematically alters a number.

Overflow - The situation that results when the magnitude of a calculated number is
equal to or greater than 10 x 109999.

Overwriting - To replace the contents of an addressable memory register or a step
in program memory, with another value/step, obliterating the previous contents.

GLOSSARY

 Page 101

Parentheses - Devices used to set off expressions as in algebra, to ensure they
will be evaluated properly before being combined with other expressions.

Pending Operation - Those operations that cannot immediately be completed ──
pending evaluation of expressions opened by parentheses, or because of the
algebraic hierarchy.

Pointer - A number that resides in addressable memory registers and is used to
specify a program address or another addressable memory register.

Polar/Rectangular Conversion - Conversion from polar coordinates to rectangular
coordinates.

Program - The logical sequence of keystrokes that are stored and executed from
program memory in the execute mode, which effects the solution of a problem.

Program Coding - To write down the step-by-step instructions of a program. Program
code results from that program design process.

Program Counter - The internal device that keeps track of where ASTROCAL currently
resides in the instruction sequence.

Program Flag - On/off program switches number 0 to 9 used as markers for various
events in a program. Two-state devices that can be changed from the keyboard or in
a program.

Program Instruction - One or more keystrokes that define an action to be taken in
a program.

Program Location - Any of 10,000 available positions in program memory, 0000
through 9999.

Program Memory - 10,000 locations where a program can be stored.

Radian Mode - One of the two options, degrees or radians, in which angles are to
be expressed.

Rectangular/Polar Conversion - Conversion from rectangular coordinates to polar
coordinates.

Registers - A generic term for any calculation storage unit that can be use to
hold a numeric value. See Internal Processing Registers, Addressable Memory
Registers, and Return-Pointer Registers.

Reset - To restore to zero: especially to restore a flag to zero. Also, the
instruction that resets all flags, resets the return-pointer registers, and
positions the program counter to 0000.

GLOSSARY

Page 102

Return - The transfer of control back to a calling program segment. If there is no
call in effect, the transfer is back to the calculate mode.

Return Pointer - A pointer holding where to return control in a program after the
processing sequence has been diverted to a subroutine.

Return-Pointer Registers - The 72 registers that provide the return pointers for
subroutines.

Root Extraction - A built-in two-variable function for obtaining the y root of x.

Rounded (Roundoff) - To eliminate the least significant digits of a number and
adjust the remaining digits to be as close as possible to the original number.

Scientific Notation - The method of representing a number by a mantissa, M (in the
range 1 <= |M| < 10), times a power-of-ten.

Single-Step - The process of execution or observing a program one step at a time.

Store - To place a copy of the contents of the display-register into a specific
addressable memory register.

Subroutine - An isolated program segment used primarily for repetitive
calculations. It returns to the calling routine upon completion of its task.

Subroutine Return Pointer - A pointer holding where to return control in a program
after the processing sequence has been diverted to a subroutine.

Too-small - The situation obtained when the magnitude of a calculated number is
greater than zero but less than 1 x 10-9999.

Top-Down - The approach whereby a problem is solved in the large before details
are filled in.

Trace - A capability for automatically displaying each step executed and its
results.

Transfer Instruction - Those instructions that can cause the program counter to be
repositioned to a point other than that which would be reached by normal
incrementing. There are two types of transfers: Unconditional transfers always
reposition the program counter to some out-of-sequence location. Conditional
Transfers make a test and either transfer or not depending upon the outcome of the
test.

Unconditional Transfer - Program instruction that unquestioningly repositions the
program counter to some out-of-sequence location.

INDEX

 Page 103

A
Accumulation in addressable registers .38
Accuracy. .10
Addition. .19, 20
Addition to addressable memory. .38
Address .65
Addressable registers . 2, 21, 35
Algebraic hierarchy .31
Ambiguous expressions .32
Angular mode. 4, 25
Antilogarithms. .24
Arc Cosine. .24
Arc Sine. .24
Arc Tan .24
Arithmetic operations .19, 38
Automatic display mode switching. .15
Automatic printing. 2, 91

B
Back-step .53
Blanking of display .33, 43
Break Point .61

C
Calculate mode. .2, 6
Cartesian coordinates .30
Case statement. .88
Chain operation .19
Change-sign operation .11, 13
Changing instructions .52
Clearing
 Addressable memory registers. .37
 Calculations. 3, 14
 Entries .11, 14
 Error conditions. .17, 96
 Program memory. .10
Codes, instructions .53, 54, 55, 56
Common logarithms .23
Conditional transfer. .46, 65
Control flags .67
Controlling display .15
Conversions
 Degrees-minutes-seconds .28
 Degree/radian .28
 Polar/rectangular .30
Coordinate transformation .30
Correcting program. .52
Cosine. .23
Cube. .23
Cube root .24

INDEX

Page 104

D
Debugging .60
Decision. .65
Decrement and jump-non-zero .71
Degree-minute-second format .29
Degree selection. 4, 25
Degree selection, programmable. .26
Degree/radian conversion. .28
Deleting instructions .52
Display, blanking .33, 43
Display control .15
Display, exchange .39
Display format. .16
Display-register. .10, 15, 33
Display, un-blanking. .60
Displaying a program. .52
Division. .19, 20
Division to addressable memory. .38
Dummy memory operations .40

E
Editing commands. .57
Editing programs. .52
Enter exponent. .12
Enter exponent, additional effects. .13
Equals key. .3, 7, 22
Equals, when to avoid .17, 76
Error conditions. .17, 22, 95
Errors, test for. .65
ex function. .24
Exchange instruction. .39
Execute mode. .2, 6, 41
Execution, order of .32
Executing a program .44
Exit. .3, 4
Exponent. .12
Exponential functions .24, 27

F
Factorial function. .23
Features. 1
File names. .41
File search .42
Finding instructions. .60
Fixed point display .16
Fixed point display, Indirect .89
Flags . 1, 67
Flashing "ERROR". .13, 17, 22, 25, 95, 96
Flow-chart. .48
Format, degree-minute-second. .29

INDEX

 Page 105

Function keys . 4, 44, 54
Functions, effect of. .24
Functions: one variable .23
Functions: trigonometric. .23, 24
Functions: two variables. .27

G
Glossary. .97
Goto instruction. .65

H
Halt instruction. .50
Hazard of the = key .17, 76
Hierarchy, algebraic. .31
Hold. .61
Hyperbolic functions. .23

I
If error instruction. .65
If flag instruction .65
If pos instruction. .65
If zero instruction .65
Improper arguments. .25
Indirect instruction. .81
Indirect addressing .81
Indirect fixed point. .89
Indirect LOG 10 .89
Indirect print. .92
Indirect transfer instructions. .87
Initial display mode. .15
Initial mantissa format .15
Inserting instructions. .53, 57
Inserting remarks .52
Instruction code values .53, 54, 55, 56
Instruction, program
 Changing. .52
 Deleting. .52
 Displaying. .52
 Finding .60
 Keying in .51
 Listing .58
 Loading .42
 Merging .43
 Saving. .44
Internal processing registers . 1, 21
Interrupting an executing program .50
Inverse .16
Inverse functions .16, 24

INDEX

Page 106

K
Key codes .54
Keying in exponent of ten .12
Keying in numbers .11

L
Labels. 1, 49
Levels of parentheses .22
Levels of routines. 1, 43, 73
Listing a program .58
Load module .43
Logarithms. .23

M
Mantissa. .15
Mantissa format .16, 18
Manual problem solving. 3
Memory, addressable . 1, 35
Memory, program . 2, 4, 6, 41, 51
Missing operands. .40, 96
Mistakes, correcting. .52
Modes, calculate, program, execute. 2
Multiplication. .19, 20
Multiplication to addressable memory. .38

N
Natural logarithms. .23
Negative exponents. .13
Negative numbers. .11
Nested parentheses. .31
Newton, example .78
Number entry. .11

O
Operands. .22
Operations, pending .22
Order of operations .32
Overflow. .13, 17, 95

INDEX

 Page 107

P
Paper advancement .92
Parentheses .21
Pending operations. .22
Pi (π). .12
Pointer .81
Polar/rectangular conversion. .30, 63
Powers, raising numbers to. .27
Precision . 1, 10
Printing. 2, 91
Printing, Indirect. .92
Processing registers. 1, 21
Program, corrections to .52
Program counter .46
Program flags .67
Program debugging .60
Program, keying in. 6, 51
Program, listing. .58
Program, loading. 5, 42, 44
Program memory. 2, 4, 6, 42, 51
Program, merging. .43
Program mode. 2
Program, saving .44
Program steps . 7, 48
Program, writing. .48
Programming .48

R
Radian/degree conversion. .28
Radian selection. .25
Radian selection, programmable. .26
Raising numbers to powers .27
Range of display. .13
Range of function arguments .25, 95
Recall addressable memory contents. .36
Reciprocal function .23
Rectangular (Cartesian) coordinates .30
Rectangular/polar conversion. .30
Registers, addressable. .35
Remarks .52, 57, 60
Replacement of display-register value33, 39
Reset instruction .68, 77
Return instruction. .77
Return-pointer. .77
Return-pointer register .77
Root extraction .24, 27
Rounding of display .12, 16

INDEX

Page 108

S
Sample listing (partial). .56, 58, 59
Scientific notation .12
Scientific notation removal .16
Sine. .23
Single-step .53
Single-step execution .60
Spherical coordinates .63
Square roots. .24
Squaring. .23
Steps, displayed. .52
Storing to addressable memory .35
Subroutines .73
Subroutine return-pointer .77
Subtracting from addressable memory .38
Subtraction .19, 20
Summing to addressable memory .38

T
Tangent .23
Tens, power of. .12
Top-down problem solving. .45
Trace .60
Transfer instructions .46, 65
Trigonometric functions .23, 24
Two-variable functions. .27

U
Unconditional transfer. .46, 65
Undefined transfer. .96
User-definable labels .49
User-defined keys .49

W
Writing a program . 6, 48
Writing over display-register contents. .33

X
x2 .23
x3 .23
x!. .23

Z
Zero, division by .17, 95

